Skip to main content
Log in

Single- and double-atom catalyst anchored on graphene-like C2N for ORR and OER: mechanistic insight and catalyst screening

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Exploring highly efficient, and low-cost oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts is extremely vital for the commercial application of advanced energy storage and conversion devices. Herein, a series of graphene-like C2N supported TMx@C2N, (TM = Fe, Co, Ni, and Cu, x = 1, 2) single- and dual-atom catalysts are designed. Their catalytic performance is systematically evaluated by means of spin-polarized density functional theory (DFT) computations coupled with hydrogen electrode model. Regulating metal atom and pairs can widely tune the catalytic performance. The most promising ORR/OER bifunctional activity can be realized on Cu2@C2N with lowest overpotential of 0.46 and 0.38 V for ORR and OER, respectively. Ni2@C2N and Ni@C2N can also exhibit good bifunctional activity through effectively balancing the adsorption strength of intermediates. The correlation of reaction overpotential with adsorption free energy is well established to track the activity and reveal the activity origin, indicating that catalytic activity is intrinsically governed by the adsorption strength of reaction intermediates. The key to achieve high catalytic activity is to effectively balance the adsorption of multiple reactive intermediates by means of the synergetic effect of suitably screened bimetal atoms. Our results also demonstrate that lattice strain can effectively regulate the adsorption free energies of reaction intermediates, regarding it as an efficient strategy to tune ORR/OER activity. This study could provide a significant guidance for the discovery and design of highly active noble-metal-free carbon-based ORR/OER catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the corresponding author on request.

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  2. Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16:16–22

    Article  ADS  PubMed  Google Scholar 

  3. Tian X, Lu XF, Xia BY, Lou XW (2020) Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4:45–68

    Article  CAS  Google Scholar 

  4. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Article  Google Scholar 

  5. Cheng XB, Liu H, Yuan H, Peng HJ, Tang C, Huang JQ, Zhang Q (2021) A perspective on sustainable energy materials for lithium batteries. SusMat 1:38–50

    Article  CAS  Google Scholar 

  6. Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S (2020) Defect engineering on electrode materials for rechargeable batteries. Adv Mater 32:1905923

    Article  CAS  Google Scholar 

  7. Xia C, Zhou Y, He C, Douka AI, Guo W, Qi K, Xia BY (2023) Recent advances on electrospun nanomaterials for zinc–air batteries. Small Sci 1:2100010

    Article  Google Scholar 

  8. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31:1804799

    Article  Google Scholar 

  9. Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B, Zhao Y, Fan L, Wang H, Hou Z, Huo S, Brandon NP, Yin Y, Guiver MD (2021) Designing the next generation of proton-exchange membrane fuel cells. Nature 595:361–369

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3:279–289

    Article  ADS  Google Scholar 

  11. Wang S, Lu A, Zhong CJ (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Conver 8:1–23

    Article  Google Scholar 

  12. Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1:1–17

    Article  ADS  Google Scholar 

  13. Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C (2020) Advanced electrocatalysts with single-metal-atom active sites. Chem Rev 120:12217–12314

    Article  CAS  PubMed  Google Scholar 

  14. Jin S, Hao Z, Zhang K, Yan Z, Chen J (2021) Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew Chem 133:20795–20816

    Article  ADS  Google Scholar 

  15. Hojjati-Najafabadi A, Aygun A, Tiri RNE, Gulbagca F, Lounissaa MI, Feng P, Karimi F, Sen F (2023) Bacillus thuringiensis based ruthenium/nickel Co-doped zinc as a green nanocatalyst: enhanced photocatalytic activity, mechanism, and efficient H2 production from sodium borohydride methanolysis. Ind Eng Chem Res 62:4655–4664

    Article  CAS  Google Scholar 

  16. Xia C, Joo SW, Hojjati-Najafabadi A, Xie H, Wu Y, Mashifana T, Vasseghian Y (2023) Latest advances in layered covalent organic frameworks for water and wastewater treatment. Chemosphere 329:138580

    Article  CAS  PubMed  Google Scholar 

  17. Jadidi Kouhbanani MA, Mosleh-Shirazi S, Beheshtkhoo N, Kasaee SR, Nekouian S, Alshehery S, Kamyab H, Chelliapan S, Ali MA, Amani AM (2023) Investigation through the antimicrobial activity of electrospun PCL nanofiber mats with green synthesized Ag–Fe nanoparticles. J Drug Del Sci Technol 85:104541

    Article  CAS  Google Scholar 

  18. Hojjati-Najafabadi A, Nasr Esfahani P, Davar F, Aminabhavi TM, Vasseghian Y (2023) Adsorptive removal of malachite green using novel GO@ZnO–NiFe2O4–αAl2O3 nanocomposites. Chem Eng J 471:144485

    Article  CAS  Google Scholar 

  19. Javad Sajjadi Shourije SM, Dehghan P, Bahrololoom ME, Cobley AJ, Vitry V, Pourian Azar GT, Kamyab H, Mesbah M (2023) Using fish scales as a new biosorbent for adsorption of nickel and copper ions from wastewater and investigating the effects of electric and magnetic fields on the adsorption process. Chemosphere 317:13729

    Article  Google Scholar 

  20. Xia C, Ren T, Darabi R, Shabani-Nooshabadi M, Jaromír Klemeš J, Karaman C, Karimi F, Wu Y, Kamyab H, Vasseghian Y, Chelliapan S (2023) Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: a promising positive electrode material for high-energy-density asymmetric supercapacitor. Energy 270:126914

    Article  CAS  Google Scholar 

  21. Gao R, Wang J, Huang Z-F, Zhang R, Wang W, Pan L, Zhang J, Zhu W, Zhang X, Shi C, Lim J, Zou J-J (2021) Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat Energy 6:614–623

    Article  ADS  CAS  Google Scholar 

  22. Ding T, Liu X, Tao Z, Liu T, Chen T, Zhang W, Shen X, Liu D, Wang S, Pang B, Wu D, Cao L, Wang L, Liu T, Li Y, Sheng H, Zhu M, Yao T (2021) Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J Am Chem Soc 143:11317–11324

    Article  CAS  PubMed  Google Scholar 

  23. Yang G, Zhu J, Yuan P, Hu Y, Qu G, Lu B-A, Xue X, Yin H, Cheng W, Cheng J, Xu W, Li J, Hu J, Mu S, Zhang J-N (2021) Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat Commun 12:1734

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48(12):3181–3192

    Article  CAS  PubMed  Google Scholar 

  25. Cruz-Martinez H, Guerra-Cabrera W, Flores-Rojas E, Ruiz-Villalobos D, Rojas-Chavez H, Pena-Castaneda YA, Medina DI (2021) Pt-free metal nanocatalysts for the oxygen reduction reaction combining experiment and theory: an overview. Molecules 26:6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma M, Kumar A, Wang D, Wang Y, Jia Y, Zhang Y, Zhang G, Yan Z, Sun X (2020) Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl Catal B 274:119091

    Article  CAS  Google Scholar 

  27. Zhao Z, Li M, Zhang L, Dai L, Xia Z (2015) Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv Mater 27:6834–6840

    Article  CAS  PubMed  Google Scholar 

  28. Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B (2020) Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today 33:100879

    Article  CAS  Google Scholar 

  29. Wang HF, Tang C, Wang B, Li BQ, Zhang Q (2017) Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn–air batteries. Adv Mater 29:1702327

    Article  Google Scholar 

  30. Zhang K, Zou R (2021) Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17:2100129

    Article  CAS  Google Scholar 

  31. Gao L, Cui X, Wang Z, Sewell CD, Li Z, Liang S, Zhang M, Li J, Hu Y, Lin Z (2021) Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. Proc Natl Acad Sci 118:e2023421118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui M, Yang C, Li B, Dong Q, Wu M, Hwang S, Xie H, Wang X, Wang G, Hu L (2021) High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater 11:2002887

    Article  CAS  Google Scholar 

  33. Wan X, Yu W, Niu H, Wang X, Zhang Z, Guo Y (2022) Revealing the oxygen reduction/evolution reaction activity origin of carbon-nitride-related single-atom catalysts: quantum chemistry in artificial intelligence. Chem Eng J 440:135946

    Article  CAS  Google Scholar 

  34. Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S, Yang R, Jiang Z, Su D, Liu C, Xing W (2018) Microporous framework induced synthesis of single-atom dispersed Fe–N–C acidic ORR catalyst and its in situ reduced Fe–N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal 8:2824–2832

    Article  CAS  Google Scholar 

  35. Xia C, Qiu Y, Xia Y, Zhu P, King G, Zhang X, Wu Z, Kim JY, Cullen DA, Zheng D, Li P, Shakouri M, Heredia E, Cui P, Alshareef HN, Hu Y, Wang H (2021) General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat Chem 13:887–894

    Article  CAS  PubMed  Google Scholar 

  36. Gao Y, Cai Z, Wu X, Lv Z, Wu P, Cai C (2018) Graphdiyne-supported single-atom-sized fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal 8:10364–10374

    Article  CAS  Google Scholar 

  37. Liu K, Fu J, Lin Y, Luo T, Ni G, Li H, Lin Z, Liu M (2022) Insights into the activity of single-atom Fe–N–C catalysts for oxygen reduction reaction. Nat Commun 13:2075

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao S-Z (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139:3336–3339

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Ji S, Guo C, Li H, Dong J, Guo P, Wang D, Li Y, Toste FD (2021) A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat Catal 4:523–531

    Article  CAS  Google Scholar 

  40. Chen ZW, Yan JM, Jiang Q (2019) Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods 3:1800291

    Article  Google Scholar 

  41. Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G (2021) Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 4:615–622

    Article  CAS  Google Scholar 

  42. Bakandritsos A, Kadam RG, Kumar P, Zoppellaro G, Medved M, Tuček J, Zbořil R (2019) Mixed-valence single-atom catalyst derived from functionalized graphene. Adv Mater 31:1900323

    Article  Google Scholar 

  43. Sun G, Zhao Z-J, Mu R, Zha S, Li L, Chen S, Zang K, Luo J, Li Z, Purdy SC, Kropf AJ, Miller JT, Zeng L, Gong J (2018) Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat Commun 9:4454

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Shan J, Ye C, Jiang Y, Jaroniec M, Zheng Y, Qiao S-Z (2023) Metal–metal interactions in correlated single-atom catalysts. Sci Adv 8:0762

    Google Scholar 

  45. Ying Y, Luo X, Qiao J, Huang H (2021) “More is different:” synergistic effect and structural engineering in double-atom catalysts. Adv Func Mater 31:2007423

    Article  CAS  Google Scholar 

  46. Ye W, Chen S, Lin Y, Yang L, Chen S, Zheng X, Qi Z, Wang C, Long R, Chen M, Zhu J, Gao P, Song L, Jiang J, Xiong Y (2019) Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5:2865–2878

    Article  CAS  Google Scholar 

  47. Li Z, He H, Cao H, Sun S, Diao W, Gao D, Lu P, Zhang S, Guo Z, Li M, Liu R, Ren D, Liu C, Zhang Y, Yang Z, Jiang J, Zhang G (2019) Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl Catal B 240:112–121

    Article  CAS  Google Scholar 

  48. Zhang L, Fischer JMTA, Jia Y, Yan X, Xu W, Wang X, Chen J, Yang D, Liu H, Zhuang L, Hankel M, Searles DJ, Huang K, Feng S, Brown CL, Yao X (2018) Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc 140:10757–10763

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Guo X, Zhang S, Huang S (2022) Building up the “Genome” of bi-atom catalysts toward efficient HER/OER/ORR. J Mater Chem A 10:11600–11612

    Article  CAS  Google Scholar 

  50. Lv X, Wei W, Wang H, Huang B, Dai Y (2020) Holey graphitic carbon nitride (g-CN) supported bifunctional single atom electrocatalysts for highly efficient overall water splitting. Appl Catal B 264:118521

    Article  CAS  Google Scholar 

  51. Mahmood J, Lee EK, Jung M, Shin D, Jeon I-Y, Jung S-M, Choi H-J, Seo J-M, Bae S-Y, Sohn S-D, Park N, Oh JH, Shin H-J, Baek J-B (2015) Nitrogenated holey two-dimensional structures. Nat Commun 6:6486

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Zhang X, Chen A, Zhang Z, Zhou Z (2018) Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J Mater Chem A 6:18599–18604

    Article  CAS  Google Scholar 

  53. Huang Q, Liu H, An W, Wang Y, Feng Y, Men Y (2019) Synergy of a metallic NiCo dimer anchored on a C2N–graphene matrix promotes the electrochemical CO2 reduction reaction. ACS Sustain Chem Eng 7:19113–19121

    Article  CAS  Google Scholar 

  54. Zhang X, Chen A, Zhang Z, Jiao M, Zhou Z (2018) Transition metal anchored C2N monolayers as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J Mater Chem A 6:11446–11452

    Article  CAS  Google Scholar 

  55. Li X, Zhong W, Cui P, Li J, Jiang J (2016) Design of efficient catalysts with double transition metal atoms on C2N layer. J Phys Chem Lett 7:1750–1755

    Article  CAS  PubMed  Google Scholar 

  56. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  57. Exner KS, Over H (2019) Beyond the rate-determining step in the oxygen evolution reaction over a single-crystalline IrO2(110) model electrode: kinetic scaling relations. ACS Catal 9:6755–6765

    Article  CAS  Google Scholar 

  58. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  59. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  ADS  CAS  Google Scholar 

  60. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  ADS  CAS  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  ADS  PubMed  Google Scholar 

  63. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  64. Deng C, He R, Wen D, Shen W, Li M (2018) Theoretical study on the origin of activity for the oxygen reduction reaction of metal-doped two-dimensional boron nitride materials. Phys Chem Chem Phys 20:10240–10246

    Article  CAS  PubMed  Google Scholar 

  65. Chase MW Jr (1998) NIST-JANAF thermochemical tables. American Chemical Society, Washington, DC

    Google Scholar 

  66. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165

    Article  CAS  Google Scholar 

  67. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  68. Li S-L, Yin H, Kan X, Gan L-Y, Schwingenschlögl U, Zhao Y (2017) Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts. Phys Chem Chem Phys 19:30069–30077

    Article  CAS  PubMed  Google Scholar 

  69. Chan AWE, Hoffmann R, Ho W (1992) Theoretical aspects of photoinitiated chemisorption, dissociation, and desorption of oxygen on platinum(111). Langmuir 8:1111–1119

    Article  CAS  Google Scholar 

  70. Kattel S, Wang G (2013) A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe Co, or Ni) clusters between graphitic pores. J Mater Chem A 1:10790–10797

    Article  CAS  Google Scholar 

  71. Lin S, Qiao Q, Chen X, Hu R, Lai N (2020) Transition metal atom doped C2N as catalyst for the oxygen reduction reaction: a density functional theory study. Int J Hydrog Energy 45:27202–27209

    Article  CAS  Google Scholar 

  72. Xue X-X, Shen S, Jiang X, Sengdala P, Chen K, Feng Y (2019) Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree. J Phys Chem Lett 10:3440–3446

    Article  CAS  PubMed  Google Scholar 

  73. Santisouk S, Sengdala P, Jiang X, Xue X-X, Chen K-Q, Feng Y (2021) Tuning the electrocatalytic properties of black and gray arsenene by introducing heteroatoms. ACS Omega 6:13124–13133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sabatier P (1911) Hydrogénations et déshydrogénations par catalyse. Eur J Inorg Chem 44:1984–2001

    CAS  Google Scholar 

  75. Bag S, Roy K, Gopinath CS, Raj CR (2014) Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl Mater Interfaces 6:2692–2699

    Article  CAS  PubMed  Google Scholar 

  76. Wang K, Liu J, Tang Z, Li L, Wang Z, Zubair M, Ciucci F, Thomsen L, Wright J, Bedford NM (2021) Establishing structure/property relationships in atomically dispersed Co–Fe dual site M–Nx catalysts on microporous carbon for the oxygen reduction reaction. J Mater Chem A 9:13044–13055

    Article  CAS  Google Scholar 

  77. Cui T, Wang YP, Ye T, Wu J, Chen Z, Li J, Lei Y, Wang D, Li Y (2022) Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew Chem Int Ed 61:e202115219

    Article  ADS  CAS  Google Scholar 

  78. Kaur H, Goel N (2023) Tailoring the cobalt porphyrin for minimal overpotential in the electrochemical oxygen evolution/reduction reactions: a density functional study. Int J Hydrog Energy 48:31720–31733

    Article  CAS  Google Scholar 

  79. Li L, Li Y, Zhao T, Huang R, Cao X, Fan T, Wen Y (2022) Exploring highly efficient dual-metal-site electrocatalysts for oxygen reduction reaction by first principles screening. J Electrochem Soc 169:026524

    Article  CAS  Google Scholar 

  80. Seok S, Jang D, Kim H, Park S (2020) Production of NiO/N-doped carbon hybrid and its electrocatalytic performance for oxygen evolution reactions. Carbon Lett 30:485–491

    Article  Google Scholar 

  81. Chen L, Hu L, Xu C, Yang L, Wang W, Huang J, Zhou M, Hou Z (2023) Preparation of self-supporting Co3S4/S-rGO film catalyst for efficient oxygen evolution reaction. Carbon Lett 33:2087–2094

    Article  Google Scholar 

  82. Yadorao Bisen O, Kumar Yadav A, Pavithra B, Kar Nanda K (2022) Electronic structure modulation of molybdenum-iron double-atom catalyst for bifunctional oxygen electrochemistry. Chem Eng J 449:137705

    Article  CAS  Google Scholar 

  83. Gu T, Zhang D, Yang Y, Peng C, Xue D, Zhi C, Zhu M, Liu J (2023) Dual-sites coordination engineering of single atom catalysts for full-temperature adaptive flexible ultralong-life solid-state Zn–Air batteries. Adv Func Mater 33:2212299

    Article  CAS  Google Scholar 

  84. Xue X-X, Tang L-M, Chen K, Zhang L, Wang E-G, Feng Y (2019) Bifunctional mechanism of N, P co-doped graphene for catalyzing oxygen reduction and evolution reactions. J Chem Phys 150:104701

    Article  ADS  PubMed  Google Scholar 

  85. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  CAS  PubMed  Google Scholar 

  86. Abidat I, Cazayus E, Loupias L, Morais C, Comminges C, Napporn T, Portehault D, Durupthy O, Mamede A-S, Chanéac C, Lamonier J-F, Habrioux A, Kokoh K (2019) Co3O4/rGO catalysts for oxygen electrocatalysis: on the role of the oxide/carbon interaction. J Electrochem Soc 166:H94–H102

    Article  CAS  Google Scholar 

  87. Gao C, Rao D, Yang H, Yang S, Ye J, Yang S, Zhang C, Zhou X, Jing T, Yan X (2021) Dual transition-metal atoms doping: an effective route to promote the ORR and OER activity on MoTe2. New J Chem 45:5589–5595

    Article  CAS  Google Scholar 

  88. Cheng Y, He S, Veder JP, De Marco R, Yang SZ, Ping-Jiang S (2019) Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 6:3478–3487

    Article  CAS  Google Scholar 

  89. Chen J, Li H, Fan C, Meng Q, Tang Y, Qiu X, Fu G, Ma T (2020) Dual single-atomic Ni–N4 and Fe–N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv Mater 32:2003134

    Article  CAS  Google Scholar 

  90. Kulkarni A, Siahrostami S, Patel A, Norskov JK (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118:2302–2312

    Article  CAS  PubMed  Google Scholar 

  91. Huang Z-F, Song J, Dou S, Li X, Wang J, Wang X (2019) Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 1:1494–1518

    Article  Google Scholar 

  92. Ashwin Kishore MR, Ravindran P (2017) Tailoring the electronic band gap and band edge positions in the C2N monolayer by p and as substitution for photocatalytic water splitting. J Phys Chem C 121:22216–22224

    Article  CAS  Google Scholar 

  93. Ashwin Kishore MR, Sjåstad AO, Ravindran P (2019) Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: a first-principles study. Carbon 141:50–58

    Article  CAS  Google Scholar 

  94. Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X (2016) Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354:1410–1414

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Wang H, Xu S, Tsai C, Li Y, Liu C, Zhao J, Liu Y, Yuan H, Abild-Pedersen F, Prinz FB, Nørskov JK, Cui Y (2016) Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354:1031–1036

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by Beijing University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

LM: Investigation, Methodology, Validation, Data curation, Formal analysis, Visualization, Writing—original draft. MZ: Conceptualization, Supervision, Investigation, Formal analysis, Writing—review and editing. KP: Methodology, Software, Validation. YL: Methodology, Software. JZ: Methodology, Software. RW: Writing—review and editing.

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 4417 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Zhang, M., Peng, K. et al. Single- and double-atom catalyst anchored on graphene-like C2N for ORR and OER: mechanistic insight and catalyst screening. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00693-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00693-6

Keywords

Navigation