Skip to main content
Log in

Construction of polylactic acid-based flame retardant composites by zinc oxide and bamboo carbon

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is often used in the preparation of environmentally friendly biodegradable polymer plastics, and how to improve the flame retardant performance of polylactic acid has been concerned by experts and scholars. Here, we provide a new idea, using bamboo activated carbon as the main material, and phytic acid, urea and Zn(NO3)2·6(H2O) as modifiers to produce a new type of carbon flame retardant. It has bamboo activated carbon as carbon source; second, it has P, N elements and metal oxides. The two synergistically play a flame retardant role on polylactic acid. The polylactic acid composite showed good thermal stability, from no grade optimization to V-0 in the UL-94 test, and the limiting oxygen index was also increased from 20.1 to 31.2%. The above tests show that bamboo activated carbon loaded with ZnO has a good flame retardant effect on polylactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soni A, Das PK, Yusuf M, Ridha S, Kamyab H, Chelliapan S, Kirpichnikova I, Mussa ZH (2023) Valorization of post-consumers plastics and agro-waste in sustainable polymeric composites for tribological applications. Waste Biomass Valoriz 1–17

  2. Kamyab H, Yuzir A, Ashokkumar V, Hosseini SE, Balasubramanian B, Kirpichnikova I (2022) Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment. Fuel 316:123199

    Article  Google Scholar 

  3. Tavakkoli O, Kamyab H, Shariati M, Mohamed AM, Junin R (2022) Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: a review. Fuel 312:122867

    Article  CAS  Google Scholar 

  4. Luo D, Wang L, Nan H, Cao Y, Wang H, Kumar TV, Wang C (2023) Phosphorus adsorption by functionalized biochar: a review. Environ Chem Lett 21:497–524

    Article  CAS  Google Scholar 

  5. Zhang X, Bhattacharya T, Wang C, Kumar A, Nidheesh PV (2023) Straw-derived biochar for the removal of antibiotics from water: Adsorption and degradation mechanisms, recent advancements and challenges. Environ Res 116998

  6. Al-Tayyar, NA, Youssef, AM, Al-hindi (2020) Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: a review. Food Chem 310

  7. Zhang M, Wu W, He S, Wang X, Jiao Y, Qu H, Xu J (2017) Synergistic flame retardant effects of activated carbon and molybdenum oxide in poly(vinyl chloride). Polym Int

  8. Zhao J, Liu H, Zhang Q (2017) Preparation of NiO nanoflakes under different calcination temperatures and their supercapacitive and optical properties. Appl Surf Sci 392:1097–1106

    Article  CAS  Google Scholar 

  9. Wang X, Wang S, Wang W, Li H, Zhang S (2019) The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Compos B Eng 183:107568

    Article  Google Scholar 

  10. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900

    Article  CAS  Google Scholar 

  11. Liao Y, Chen Y, Zhang F (2021) A biological reactive flame retardant for flame retardant modification of cotton fabric. Colloids Surf A Physicochem Eng Asp 630

  12. Lu SY, Hamerton I, Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  13. Wang J, Guo Y, Zhao SP, Huang R, Kong X (2019) A novel intumescent flame retardant imparts high flame retardancy to epoxy resin. Polym Adv Technol 31

  14. He P, Xiaoyan Z, Ping L, Jian F, Guodong S, Shuying L, Zhou D, Chaohong (2018) Preparation and flame retardancy of reactive flame retardant for cotton fabric. J Therm Anal Calorim 132

  15. Zhao W, Kundu CK, Li Z, Li X, Zhang Z (2021) Flame retardant treatments for polypropylene: strategies and recent advances. Compos Part A 145:106382

    Article  CAS  Google Scholar 

  16. Jiang P, Zhang S, Bourbigot S, Chen Z, Duquesne S, Casetta M (2019) Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polym Degrad Stab 165:68–79

    Article  CAS  Google Scholar 

  17. Zhou S, Yang Y, Zhu Z, Xie Z, Sun X, Jia C, Liu F, Wang J, Yang J (2021) Preparation of a halogen-free flame retardant and its effect on the poly(l-lactic acid) as the flame retardant material. Polymer 229:124027

  18. Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, Aljohani AA (2022) A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. Chemosphere 308:136471

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym 69:22–46

    Article  CAS  Google Scholar 

  20. Yu B, Shi AY, Yuan AB, Qiu AS, Xing AW (2015) Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 3:8034–8044

    Article  CAS  Google Scholar 

  21. Liu G, Zhang X, Liu H, He Z, Show PL, Vasseghian Y, Wang C (2023) Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: a review. Environ Res 116534

  22. Zhang M, Wu W, He S, Wang X, Jiao Y, Qu H, Xu J (2018) Synergistic flame retardant effects of activated carbon and molybdenum oxide in poly (vinyl chloride). Polym Int 67:445–452

    Article  CAS  Google Scholar 

  23. Gong J, Tian N, Liu J, Yao K, Jiang Z, Chen X, Wen X, Mijowska E, Tang T (2014) Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab 99:18–26

    Article  CAS  Google Scholar 

  24. Roy N, Kannabiran K, Mukherjee A (2023) Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. Chemosphere 333:138912

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Meng D, Wang S, Sun J, Li H, Gu X, Zhang S (2022) Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind Crops Prod 176:114364

    Article  CAS  Google Scholar 

  26. Barbalini M, Bartoli M, Tagliaferro A, Malucelli G (2020) Phytic acid and biochar: an effective all bio-sourced flame retardant formulation for cotton fabrics. Polymers 12:811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, Yang W, Yang T, Li L, Wang M (2023) Thermal degradation, flame retardancy, and char analysis of ammonium phytate-based flame retardant treated loblolly pine wood. Eur J Wood Wood Prod 81:957–971

    Article  CAS  Google Scholar 

  28. Dong Y, Hou L, Wu P (2020) Exploring the diffusion behavior of urea aqueous solution in the viscose film by ATR-FTIR spectroscopy. Cellulose 27:2403–2415

    Article  CAS  Google Scholar 

  29. Mondal K, Islam M, Singh S, Sharma A (2022) Fabrication of high surface area microporous ZnO from ZnO/carbon sacrificial composite monolith template. Micromachines 13:335

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu G, Liu X, Yu J (2010) Ammonium polyphosphate with crystalline form V by ammonium dihydrogen phosphate process. Ind Eng Chem Res 49:5523–5529

    Article  CAS  Google Scholar 

  31. Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Clean Prod 124:114–119

    Article  CAS  Google Scholar 

  32. Feng C, Liang M, Zhang Y, Jiang J, Huang J (2016) Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. J Anal Appl Pyrol 122:241–248

    Article  CAS  Google Scholar 

  33. Nie X, Long L, Xu T, Li B, Shan C, Xiang Y, Liu Y, Qin S, He M, Yu J (2023) Combustion and pyrolysis behaviors of flame retardant poly (lactic acid) composites containing phosphaphenanthrene and maleimide molecules. J Anal Appl Pyrol 174:106143

    Article  CAS  Google Scholar 

  34. Niu M, Zhang Z, Wei Z, Wang W (2020) Effect of a novel flame retardant on the mechanical, thermal and combustion properties of poly (lactic acid). Polymers 12:2407

    Article  CAS  PubMed Central  Google Scholar 

  35. Jia YW, Zhao X, Fu T, Li DF, Wang YZ (2020) Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Compos B Eng 197:108192

    Article  CAS  Google Scholar 

  36. Yang Y, Wang X, Fei B, Li H, Zhang S (2021) Preparation of phytic acid‐based green intumescent flame retardant and its application in PLA nonwovens. Polym Adv Technol 32:3039–3049

    Article  CAS  Google Scholar 

  37. Zhang J, Li Z, Zhang L, Yang Y, Wang D-Y (2019) Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain Chem Eng 8:994–1003

    Article  Google Scholar 

  38. Chen CJ, Chuanmei (2016) Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J Therm Anal Calorim 123

  39. Smart G, Kandola B, Holdsworth A, Price D, Horrocks A, Smart G, Kandola B et al (2012) Zinc stannate interactions with flame retardants in polyamides; part 1: synergies with organobromine-containing flame retardants in polyamides 6 (PA6) and 6.6 (PA6. 6). Polym Degrad Stab 97(12):2503–2510. Polym Degrad Stab

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Zhejiang Province of China (no. LZ22C160006), the National Natural Science Foundation of China (no. 32171878), and the National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization of Zhejiang A and F University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingda Huang or Wenbiao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, M., Yin, N., Chen, Y. et al. Construction of polylactic acid-based flame retardant composites by zinc oxide and bamboo carbon. Carbon Lett. 34, 665–675 (2024). https://doi.org/10.1007/s42823-023-00663-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00663-4

Keywords

Navigation