Skip to main content

Advertisement

Log in

Construction of graphene/AuNPs based amperometric immunosensor for detecting bladder cancer biomarker apolipoprotein A1

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This paper presents the construction and characterization of an amperometric immunosensor based on the graphene/gold nanoparticles (AuNPs/GO) nanocomposite for the detection of the bladder cancer biomarker, apolipoprotein A1 (Apo-A1). The morphological analysis of the AuNPs/GO nanocomposite demonstrated an almost spherical shape of AuNPs and the successful coverage of their surface by graphene oxide. An increased G peak and decreased D peak after the association of AuNPs with GO, implied a reduction in graphene defects. The X-ray photoelectron spectroscopy (XPS) indicated a significant decrease in the quantity of oxygen-containing functional groups in the AuNPs/GO nanocomposite, as compared to the original GO. Furthermore, the developed sensor demonstrated commendable sensitivity and selectivity, with a wide linear range for Apo-A1 detection. Importantly, the immunosensor exhibited remarkable stability over a period of 14 days, signifying its potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Qiu H, Hu X, He C, Yu B, Li Y, Li J (2020) Identification and validation of an individualized prognostic signature of bladder cancer based on seven immune related genes. Front Genet 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang J, Shen C, Dong D, Zhong X, Wang Y, Yang X (2021) Identification and verification of an immune-related lncRNA signature for predicting the prognosis of patients with bladder cancer. Int Immunopharmacol 90:107146. https://doi.org/10.1016/j.intimp.2020.107146

    Article  CAS  PubMed  Google Scholar 

  3. Song B-N, Kim S-K, Mun J-Y, Choi Y-D, Leem S-H, Chu I-S (2019) Identification of an immunotherapy-responsive molecular subtype of bladder cancer. EBioMedicine 50:238–245. https://doi.org/10.1016/j.ebiom.2019.10.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robertson AG, Groeneveld CS, Jordan B, Lin X, McLaughlin KA, Das A, Fall LA, Fantini D, Taxter TJ, Mogil LS, Lindskrog SV, Dyrskjøt L, McConkey DJ, Svatek RS, de Reyniès A, Castro MAA, Meeks JJ (2020) Identification of differential tumor subtypes of T1 bladder cancer. Eur Urol 78:533–537. https://doi.org/10.1016/j.eururo.2020.06.048

    Article  CAS  PubMed  Google Scholar 

  5. Kim S-E, Kim YJ, Song S, Lee K-N, Seong WK (2019) A simple electrochemical immunosensor platform for detection of Apolipoprotein A1 (Apo-A1) as a bladder cancer biomarker in urine. Sens Actuators B Chem 278:103–109. https://doi.org/10.1016/j.snb.2018.09.068

    Article  CAS  Google Scholar 

  6. Kumar RKR, Kumar A, Chuang C-H, Shaikh MO (2023) Electrochemical immunosensor utilizing a multifunctional 3D nanocomposite coating with antifouling capability for urinary bladder cancer diagnosis. Sens Actuators B Chem 384:133621. https://doi.org/10.1016/j.snb.2023.133621

    Article  CAS  Google Scholar 

  7. Nedjadi T, Albarakati N, Benabdelkamel H, Masood A, Alfadda AA, Al-Maghrabi J (2021) Proteomic profiling of plasma-derived biomarkers in patients with bladder cancer: a step towards clinical translation. Life 11:1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharifuzzaman M, Barman SC, Zahed MA, Sharma S, Yoon H, Nah JS, Kim H, Park JY (2020) An electrodeposited MXene-Ti3C2Tx nanosheets functionalized by task-specific ionic liquid for simultaneous and multiplexed detection of bladder cancer biomarkers. Small 16:2002517

    Article  CAS  Google Scholar 

  9. Tabaei S, Haghshenas MR, Webster TJ, Ghaderi A (2023) Proteomics strategies for urothelial bladder cancer diagnosis, prognosis and treatment: trends for tumor biomarker sources. Anal Biochem 666:115074. https://doi.org/10.1016/j.ab.2023.115074

    Article  CAS  PubMed  Google Scholar 

  10. Qi J, Zhang X, Zhang Q, Xue Y, Meng F, Liu Y, Yang G (2022) Ultrasensitive “signal-on” sandwich electrochemiluminescence immunosensor based on Pd@Au-L-cysteine enabled multiple-amplification strategy for Apolipoprotein-A1 detection. Microchem J 178:107409. https://doi.org/10.1016/j.microc.2022.107409

    Article  CAS  Google Scholar 

  11. Magray JA, Pandith AA, Qasim I, Khateeb M, Hamid A, Koul A, Shah ZA, Baba SM, Mansoor S, Charifi W (2021) Significant implications of APOA1 gene sequence variations and its protein expression in bladder cancer. Biomedicines 9:938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mobed A, Razavi S, Ali A, Shakouri SK, Koohkan G (2021) Biosensors in Parkinson’s disease. Clin Chim Acta 518:51–58. https://doi.org/10.1016/j.cca.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  13. Choi EJ, Drago NP, Humphrey NJ, Van Houten J, Ahn J, Lee J, Kim I-D, Ogata AF, Penner RM (2023) Electrodeposition-enabled, electrically-transduced sensors and biosensors. Mater Today 62:129–150. https://doi.org/10.1016/j.mattod.2022.11.021

    Article  CAS  Google Scholar 

  14. Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, Shim Y-B, Salomon C, Shiddiky MJ (2020) MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 145:2038–2057

    Article  CAS  PubMed  Google Scholar 

  15. Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN (2022) Recent advances in hydroxyapatite-based electrochemical biosensors: applications and future perspectives. Sens Bio-Sens Res 38:100542. https://doi.org/10.1016/j.sbsr.2022.100542

    Article  Google Scholar 

  16. Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, Saad Aly MA, Khan MZH, Hossain SI (2021) Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron X 8:100075. https://doi.org/10.1016/j.biosx.2021.100075

    Article  CAS  Google Scholar 

  17. Sun B, Li D, Hou X, Li W, Gou Y, Hu F, Li W, Shi X (2020) A novel electrochemical immunosensor for the highly sensitive and selective detection of the depression marker human apolipoprotein A4. Bioelectrochemistry 135:107542. https://doi.org/10.1016/j.bioelechem.2020.107542

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Qi J, Zhang Q, Xue Y, Meng F, Zhang J, Liu Y, Yang G, Wu C (2022) A novel sandwich impedimetric immunosensor for detection of apolipoprotein-A1 based on the gold nanoparticle–hybridized mercapto-β-cyclodextrin-Pb(II) metal–organic framework. Microchim Acta 190:33. https://doi.org/10.1007/s00604-022-05618-6

    Article  CAS  Google Scholar 

  19. Li L, Liu X, Su B, Zhang H, Li R, Liu Z, Chen Q, Huang T, Cao H (2022) An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum. Microchem J 179:107463. https://doi.org/10.1016/j.microc.2022.107463

    Article  CAS  Google Scholar 

  20. Yang M, Lu H, Liu S (2022) Recent advances of MXene-based electrochemical immunosensors. Appl Sci 12:5630

    Article  CAS  Google Scholar 

  21. Haji-Hashemi H, Safarnejad MR, Norouzi P, Ebrahimi M, Shahmirzaie M, Ganjali MR (2019) Simple and effective label free electrochemical immunosensor for Fig mosaic virus detection. Anal Biochem 566:102–106. https://doi.org/10.1016/j.ab.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  22. Ning S, Zhou M, Liu C, Waterhouse GIN, Dong J, Ai S (2019) Ultrasensitive electrochemical immunosensor for avian leukosis virus detection based on a β-cyclodextrin-nanogold-ferrocene host-guest label for signal amplification. Anal Chim Acta 1062:87–93. https://doi.org/10.1016/j.aca.2019.02.041

    Article  CAS  PubMed  Google Scholar 

  23. Jozghorbani M, Fathi M, Kazemi SH, Alinejadian N (2021) Determination of carcinoembryonic antigen as a tumor marker using a novel graphene-based label-free electrochemical immunosensor. Anal Biochem 613:114017. https://doi.org/10.1016/j.ab.2020.114017

    Article  CAS  PubMed  Google Scholar 

  24. Manasa G, Mascarenhas RJ, Malode SJ, Shetti NP (2022) Graphene-based electrochemical immunosensors for early detection of oncomarker carcinoembryonic antigen. Biosens Bioelectron X 11:100189. https://doi.org/10.1016/j.biosx.2022.100189

    Article  CAS  Google Scholar 

  25. Sangili A, Kalyani T, Chen S-M, Rajendran K, Jana SK (2022) Label-free electrochemical immunosensor based on l-cysteine-functionalized AuNP on reduced graphene oxide for the detection of dengue virus E-protein in dengue blood serum. Compos Part B Eng 238:109876. https://doi.org/10.1016/j.compositesb.2022.109876

    Article  CAS  Google Scholar 

  26. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  27. Liu D, Wang A, Zhou J, Wang X, Liu H, Ding P, Zhang Y, Zhu X, Zhou Y, Zhang G (2022) A label-free electrochemical immunosensor based on AuNPs/GO-PEI-Ag-Nf for olaquindox detection in feedstuffs. Microchem J 177:107287. https://doi.org/10.1016/j.microc.2022.107287

    Article  CAS  Google Scholar 

  28. Baek SH, Roh J, Park CY, Kim MW, Shi R, Kailasa SK, Park TJ (2020) Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater Sci Eng C 107:110273. https://doi.org/10.1016/j.msec.2019.110273

    Article  CAS  Google Scholar 

  29. Khalaf MM, Gouda M, Mohamed IMA, Abd El-Lateef HM (2023) Different additives of gold nanoparticles and lithium oxide loaded chitosan based films; controlling optical and structural properties, evaluating cell viability. Biochem Biophys Res Commun 649:118–124. https://doi.org/10.1016/j.bbrc.2023.01.098

    Article  CAS  PubMed  Google Scholar 

  30. Dat NM, Cong CQ, Phuc NM, Dat NT, Huong LM, Tai LT, Hai ND, Thinh DB, Dat TD, Phong MT, Hieu NH (2022) Facile phytosynthesis of gold nanoparticles-doped graphene oxide using Mangifera indica leaf extract: characterization, antibacterial activity, and catalytic reduction of organic dyes. Mater Today Sustain 19:100216. https://doi.org/10.1016/j.mtsust.2022.100216

    Article  Google Scholar 

  31. Kasztelan M, Słoniewska A, Gorzkowski M, Lewera A, Pałys B, Zoladek S (2021) Ammonia modified graphene oxide—gold nanoparticles composite as a substrate for surface enhanced Raman spectroscopy. Appl Surf Sci 554:149060. https://doi.org/10.1016/j.apsusc.2021.149060

    Article  CAS  Google Scholar 

  32. Sridhar K, Inbaraj BS, Chen B-H (2022) An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Chemosphere 301:134702. https://doi.org/10.1016/j.chemosphere.2022.134702

    Article  CAS  PubMed  Google Scholar 

  33. Cheng X-L, Fu T-R, Zhang D-F, Xiong J-H, Yang W-Y, Du J (2023) Biomass-assisted fabrication of rGO-AuNPs as surface-enhanced Raman scattering substrates for in-situ monitoring methylene blue degradation. Anal Biochem 667:115087. https://doi.org/10.1016/j.ab.2023.115087

    Article  CAS  PubMed  Google Scholar 

  34. Zhang H, Zhang W, Gao X, Man P, Sun Y, Liu C, Li Z, Xu Y, Man B, Yang C (2019) Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS application. Sens Actuators B Chem 282:809–817. https://doi.org/10.1016/j.snb.2018.10.095

    Article  CAS  Google Scholar 

  35. Cheng J, Zhang S, Wang S, Wang P, Su X-O, Xie J (2019) Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy. Food Chem 276:157–163. https://doi.org/10.1016/j.foodchem.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  36. Carvalho AP, Alegria EC, Fantoni A, Ferraria AM, Do Rego AMB, Ribeiro AP (2022) Effect of graphene vs. reduced graphene oxide in gold nanoparticles for optical biosensors—a comparative study. Biosensors 12:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nie L, Zhang J, Wu Q, Fei G, Hu K, Fang L, Yang S (2020) Fabrication of micropatterned gold nanoparticles on graphene oxide nanosheet via thiol-Michael addition click chemistry. Mater Lett 261:127014. https://doi.org/10.1016/j.matlet.2019.127014

    Article  CAS  Google Scholar 

  38. Lee D-J, Kim DY (2019) Hydrophobic paper-based SERS sensor using gold nanoparticles arranged on graphene oxide flakes. Sensors 19:5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan J, Liu M, Li D, Zheng H, Zhang D (2021) Overoxidized poly(3,4-ethylenedioxythiophene)–gold nanoparticles–graphene-modified electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. J Pharm Anal 11:699–708. https://doi.org/10.1016/j.jpha.2021.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  40. You M, Yang S, An Y, Zhang F, He P (2020) A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem 862:114017. https://doi.org/10.1016/j.jelechem.2020.114017

    Article  CAS  Google Scholar 

  41. Medhi A, Baruah S, Singh J, Betty CA, Mohanta D (2022) Au nanoparticle modified GO/PEDOT-PSS based immunosensor probes for sensitive and selective detection of serum immunoglobulin g (IgG). Appl Surf Sci 575:151775. https://doi.org/10.1016/j.apsusc.2021.151775

    Article  CAS  Google Scholar 

  42. Mahato K, Purohit B, Kumar A, Chandra P (2020) Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-Dendroids and graphene oxide nanocomposite. Biosens Bioelectron 148:111815. https://doi.org/10.1016/j.bios.2019.111815

    Article  CAS  PubMed  Google Scholar 

  43. Lu T-C, Sun Y-M, Zhong Y, Lin X-H, Lei Y, Liu A-L (2023) Electrochemical immunosensor based on AuNPs/ERGO@CNT nanocomposites by one-step electrochemical co-reduction for sensitive detection of P-glycoprotein in serum. Biosens Bioelectron 222:115001. https://doi.org/10.1016/j.bios.2022.115001

    Article  CAS  PubMed  Google Scholar 

  44. Wang A, Zhou Y, Chen Y, Zhou J, You X, Liu H, Liu Y, Ding P, Qi Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G (2023) Electrochemical immunosensor for ultrasensitive detection of human papillomaviruse type 16 L1 protein based on Ag@AuNPs-GO/SPA. Anal Biochem 660:114953. https://doi.org/10.1016/j.ab.2022.114953

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Xing H, Jin P, Li M, Liu H (2022) Electrochemical immunosensing based on signal amplification strategy for alpha-fetoprotein detection. Int J Electrochem Sci 17:22107

    Article  CAS  Google Scholar 

  46. Zhou Y, Yu Y, Chai Y, Yuan R (2018) Electrochemical synthesis of silver nanoclusters on electrochemiluminescent resonance energy transfer amplification platform for Apo-A1 detection. Talanta 181:32–37. https://doi.org/10.1016/j.talanta.2017.12.063

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Li G, Zhang Y, Zhu M, Ma H, Du B, Wei Q, Wan Y (2015) Nanobody-based electrochemical immunoassay for ultrasensitive determination of apolipoprotein-A1 using silver nanoparticles loaded nanohydroxyapatite as label. Anal Chem 87:11209–11214. https://doi.org/10.1021/acs.analchem.5b04063

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YW; software, JY and TZ; validation, JY and LW; formal analysis, JY, XW and LW; investigation, LW and MG; resources, XS and YW; data curation, XW and YL; writing—original draft preparation, MG, YL and XS; writing—review and editing, JY and Y.W.; visualization, TZ; supervision, YW; project administration, YW. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yanjie Wang.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, X., Zhou, T. et al. Construction of graphene/AuNPs based amperometric immunosensor for detecting bladder cancer biomarker apolipoprotein A1. Carbon Lett. 34, 907–915 (2024). https://doi.org/10.1007/s42823-023-00595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00595-z

Keywords

Navigation