Skip to main content
Log in

Basic principles of resonance Rayleigh scattering in Graphene

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The mechanism of resonant light scattering in single-layer graphene is discussed. A new concept of electron–hole self-photorecombination is proposed, which makes it possible to clearly separate the phenomena of resonant light scattering and resonant photoluminescence. It is established that Rayleigh resonant radiation has been found to consist of virtual and non-virtual components. It has been shown that Rayleigh radiation is mainly caused by resonant non-virtual optical transitions. The band of Rayleigh radiation due to resonant virtual transitions is quite wide, and the intensity is extremely low. On the basis of the presented theory, the results of numerical estimates of the linewidth and intensity of the Rayleigh band of single-layer graphene are in fairly good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data gathered or analyzed during this study are included in this study article.

References

  1. Yoon D, Moon H, Cheong H (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55(3):1299–1303. https://doi.org/10.3938/jkps.55.1299

    Article  CAS  Google Scholar 

  2. Cong C, Yu T, Saito R, Dresselhaus GF, Dresselhaus MS (2011) Second-order overtone and combination Raman modes of graphene layers in the range of 1690–2150 cm−1. ACM Nano 5(3):1600–1605. https://doi.org/10.1021/nn200010m

    Article  CAS  Google Scholar 

  3. Ferreira EHM, Moutinho MVO, Stavale F, Lucchese MM, Capaz RB, Achete CA, Jorio A (2010) Evolution of the Raman spectra from single-, few- and many-layer graphene with increasing disorder. Phys Rev. https://doi.org/10.1103/PhysRevB.82.125429

    Article  Google Scholar 

  4. Rodriguez-Nivea JF, Saito R, Costa SD, Dresselhaus MS (2012) Effect of 13C isotope doping on the optical phonon modes in graphene: localization and Raman spectroscopy. Phys Rev B 85:245406-1–245406-8. https://doi.org/10.1103/PhysRevB.85.245406

    Article  CAS  Google Scholar 

  5. Kumar V, Kumar A, Lee D-J, Park S-S (2021) Estimation of number of graphene layers using different methods: a focused review. Materials 14(16):4590. https://doi.org/10.3390/ma14164590

    Article  CAS  Google Scholar 

  6. Bruna M, Ott AK, Ijas M, Yoon D, Sassi U, Ferrari AC (2014) Doping dependence of the Raman spectrum of defected graphene. ACS Nano 8(7):7432–7441. https://doi.org/10.1021/nn502676g

    Article  CAS  Google Scholar 

  7. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  8. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550. https://doi.org/10.1080/00018732.2011.582251

    Article  CAS  Google Scholar 

  9. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/NNANO.2013.46

    Article  CAS  Google Scholar 

  10. Beams R, Cancado LG, Novotny L (2015) Raman characterization of defects and dopants in graphene. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/27/8/083002

    Article  Google Scholar 

  11. Wu J-B, Lin M-L, Cong X, Liua H-N, Tan P-H (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47:1822–1873. https://doi.org/10.1039/c6cs00915h

    Article  CAS  Google Scholar 

  12. Jiang J, Pachter R, Mehmood F, Islam AE, Maruyama B, Boeckl JJ (2015) A Raman spectroscopy signature for characterizing defective single-layer graphene: defect-induced I(D)/I(D’) intensity ratio by theoretical analysis. Carbon 90:53–62. https://doi.org/10.1016/j.carbon.2015.03.049

    Article  CAS  Google Scholar 

  13. Jorio A, Dresselhaus MS, Saito R, Dresselhaus G (2011) Raman Spectroscopy in Craphene Related Systems. John Wiley & Sons, Singapore

    Book  Google Scholar 

  14. Basko DM (2008) Theory of resonant multiphonon Raman scattering in graphene. Phys Rev B 78:125418-1–125418-42. https://doi.org/10.1103/PhysRevB.78.125418

    Article  CAS  Google Scholar 

  15. Venezuela P, Lazzeri M, Mauri F (2011) Theory of double-resonant Raman spectra in graphene: intensity and defect-induced and two-phonon dands. Phys Rev B 84:035433-1–035433-25. https://doi.org/10.1103/PhysRevB.84.035433

    Article  CAS  Google Scholar 

  16. Heller EJ, Yang Y, Kocia L, Chen W, Fang S, Borunda M, Kaxiras E (2016) Theory of Graphene Raman scattering. ACS Nano 10(2):2803–2818. https://doi.org/10.1021/acsnano.5b07676

    Article  CAS  Google Scholar 

  17. Hong J, Park MK, Lee EJ, Lee DE, Hwang DS, Ryu S (2013) Origin of new broad Raman D and G peaks in annealed graphene. Sci Rep 3(2700):1–5. https://doi.org/10.1038/srep02700

    Article  Google Scholar 

  18. Casiraghi C, Harstschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov KS, Ferrari AC (2007) Rayleigh imaging of graphene and graphene layers. Nano Lett 7(9):2711–2717. https://doi.org/10.1021/nl071168m

    Article  CAS  Google Scholar 

  19. Davydov AS (1976) Solid state theory, Russian. Nauka, Moscow

    Google Scholar 

  20. Melkonyan SV (2021) Coulomb mechanism of Raman radiation in graphene. Carbon Letters 31(5):1051–1059. https://doi.org/10.1007/s42823-020-00220-3

    Article  Google Scholar 

  21. Anselm AI (1981) Introduction to semiconductor theory. Mir Pub, Moscow

    Google Scholar 

  22. Fitzpatrick R (2015) Quantum mechanics. World Scientific Publishing Co. Pte. Ltd., Singapure

    Book  Google Scholar 

  23. Stauber T, Peres NMR, Guinea F (2007) Electronic transport in graphene: a semi-classical approach including midgap states. Phys Rev B 76:205423-1–205423-10. https://doi.org/10.1103/PhysRevB.76.205423

    Article  CAS  Google Scholar 

  24. Hwang EH, Sarma SD (2008) Acoustic phonon scattering limited carrier mobility in 2D extrinsic Graphene. Phys Rev B 77:115449-1–115449-6. https://doi.org/10.1103/PhysRevB.77.115449

    Article  CAS  Google Scholar 

  25. Perebeinos V, Avouris P (2010) Inelastic scattering and current saturation in graphene. Phys Rev B 81:195442-1–195442-8. https://doi.org/10.1103/PhysRevB.81.195442

    Article  CAS  Google Scholar 

  26. Shishir RS, Ferry DK (2009) Intrinsic mobility in graphene. J Phys Condens Matter 21:232204. https://doi.org/10.1088/0953-8984/21/23/232204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Melkonyan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkonyan, S.V., Zalinyan, T.A. Basic principles of resonance Rayleigh scattering in Graphene. Carbon Lett. 33, 1783–1789 (2023). https://doi.org/10.1007/s42823-023-00569-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00569-1

Keywords

Navigation