Skip to main content
Log in

Nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

A Correction to this article was published on 08 July 2023

This article has been updated

Abstract

Flexible supercapacitors (FS) are ideal as power backups for upcoming stretchable electronics due to their high power density and good mechanical compliance. However, lacking technology for FS mass manufacturing is still a significant obstacle.

The present study describes a novel method for preparing FS based on reduced graphene oxide (RGO) using the N+ plasma technique, in which N+ reduces graphene oxide on the surface of a cotton/polyester substrate. The effect of aloe vera (AV) as a natural reducing & capping agent and carbon nanotubes (CNT) as nanoconductors on the electrochemical performance of the electrodes is studied. FESEM and XPS were employed to investigate the electrodes' structural and chemical composition of electrodes. The galvanostatic charge–discharge curves of electrodes revealed the enhancement of the electrochemical activity of the as-prepared electrode upon additions of AV and CNT. The areal capacitance of the RGO, RGO/AV, and RGO/AV/CNT supercapacitors at 5 mV/s was 511, 1244.5, and 1879 mF/cm2, respectively. The RGO electrode showed capacitive retention of 80.9% after 2000 cycles enhanced to 89.7% and 92% for RGO/AV and RGO/AV/CNT electrodes, respectively. The equivalent series resistance of the RGO electrode was 126.28 Ω, decreased to 56.62 and 40.06 Ω for RGO/AV and RGO/AV/CNT electrodes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Change history

References

  1. Utetiwabo W, Yang L, Tufail MK, Zhou L, Chen R, Lian Y, Yang W (2020) Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chin Chem Lett 31:1474–1489

    Article  CAS  Google Scholar 

  2. Zhang Y, Mei H-x, Cao Y, Yan X-h, Yan J, Gao H-l, Luo H-w, Wang S-w, Jia X-d, Kachalova L (2021) Recent advances and challenges of electrode materials for flexible supercapacitors. Coord Chem Rev 438:213910

    Article  CAS  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Gopi CVM, Vinodh R, Sambasivam S, Obaidat IM, Kim H-J (2020) Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J Energ Stor 27:101035

    Article  Google Scholar 

  5. Du M, Li Q, Zhao Y, Liu C-S, Pang H (2020) A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev 416:213341

    Article  CAS  Google Scholar 

  6. Wang Z, Carlsson DO, Tammela P, Hua K, Zhang P, Nyholm L, Strømme M (2015) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9:7563–7571

    Article  CAS  Google Scholar 

  7. Chee WK, Lim HN, Zainal Z, Huang NM, Harrison I, Andou Y (2016) Flexible graphene-based supercapacitors: a review. J Phys Chem C 120:4153–4172

    Article  CAS  Google Scholar 

  8. Atta MM, Fahim RA (2021) Flexible and wearable supercapacitors: a short review. J Energ Stor 44:103475

    Article  Google Scholar 

  9. Lu H, Chen J, Tian Q (2018) Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni–Al layered double hydroxide nanoparticles. J Coll Interf Sci 513:342–348

    Article  CAS  Google Scholar 

  10. Xing J, Tao P, Wu Z, Xing C, Liao X, Nie S (2019) Nanocellulose-graphene composites: a promising nanomaterial for flexible supercapacitors. Carbohydr Polym 207:447–459

    Article  CAS  Google Scholar 

  11. Xu X, Luo M, He P, Yang J (2020) Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J Phys D: Appl Phys 53:125402

    Article  CAS  Google Scholar 

  12. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44:3639–3665

    Article  CAS  Google Scholar 

  13. Cakici M, Kakarla RR, Alonso-Marroquin F (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 309:151–158

    Article  CAS  Google Scholar 

  14. Chen P-C, Shen G, Shi Y, Chen H, Zhou C (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403–4411

    Article  CAS  Google Scholar 

  15. Wang W, Li T, Liu K, Wang S, Peng H (2020) Effects of three fabric weave textures on the electrochemical and electrical properties of reduced graphene/textile flexible electrodes. Rsc Adv 10:6249–6258

    Article  CAS  Google Scholar 

  16. Cai X, Peng M, Yu X, Fu Y, Zou D (2014) Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J Mater Chem C 2:1184–1200

    Article  CAS  Google Scholar 

  17. Atta MM, Abdel Maksoud M, Sallam O, Awed A (2021) Gamma irradiation synthesis of wearable supercapacitor based on reduced graphene oxide/cotton yarn electrode. J Mater Sci: Mater Electron 32:3688–3698

    CAS  Google Scholar 

  18. Wang C, Yang Y, Li R, Wu D, Qin Y, Kong Y (2020) Polyaniline functionalized reduced graphene oxide/carbon nanotube ternary nanocomposite as a supercapacitor electrode. Chem Commun 56:4003–4006

    Article  CAS  Google Scholar 

  19. Aunkor M, Mahbubul I, Saidur R, Metselaar H (2016) The green reduction of graphene oxide. RSC Adv 6:27807–27828

    Article  CAS  Google Scholar 

  20. El Azab IH, Ahmed EM, Elnaggar AY, Taha EO, Atta MM (2022) Facile ultrasonic aided green reduction of graphene oxide by Doum palm fruit. Fuller Nanotube Carbon Nanostruct 30:951–957

    Article  Google Scholar 

  21. Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S (2018) Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics. Appl Surf Sci 452:481–486

    Article  CAS  Google Scholar 

  22. Zhou Y, Hu X, Guo S, Yu C, Zhong S, Liu X (2018) Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim Acta 26:12–19

    Article  Google Scholar 

  23. Kulshrestha S, Qayyum S, Khan AU (2017) Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms. Microb Pathogen 103:167–177

    Article  CAS  Google Scholar 

  24. Maan AA, Nazir A, Khan MKI, Ahmad T, Zia R, Murid M, Abrar M (2018) The therapeutic properties and applications of Aloe vera: a review. J Herb Med 12:1–10

    Article  Google Scholar 

  25. Umadevi M, Rajeswari R, Rahale CS, Selvavenkadesh S, Pushpa R, Kumar KS, Bhowmik D (2012) Traditional and medicinal uses of Withania somnifera. Pharma Innovation 1:102

    Google Scholar 

  26. Langmead L, Makins RJ, Rampton DS (2004) Anti-inflammatory effects of aloe vera gel in human colorectal mucosa in vitro. Aliment Pharmacol Ther 19:521–527

    Article  CAS  Google Scholar 

  27. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  Google Scholar 

  28. Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J, Roy SS (2017) Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. Rsc Adv 7:26680–26688

    Article  CAS  Google Scholar 

  29. Ramanathan S, Elanthamilan E, Obadiah A, Durairaj A, Merlin JP, Ramasundaram S, Vasanthkumar S (2017) Aloe vera (L.) Burm. f. extract reduced graphene oxide for supercapacitor application. J Mater Sci: Mater Electron 28:16648–16657

    CAS  Google Scholar 

  30. Karnan M, Subramani K, Sudhan N, Ilayaraja N, Sathish M (2016) Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl Mater Interface 8:35191–35202

    Article  CAS  Google Scholar 

  31. Perumal P, Sivaraj P, Abhilash K, Soundarya G, Balraju P, Selvin PC (2020) Green synthesized spinel lithium titanate nano anode material using Aloe Vera extract for potential application to lithium ion batteries. J Sci: Adv Mater Device 5:346–353

    Google Scholar 

  32. Shivashankar A, Prashantha S, Anantharaju K, Malini S, Manjunatha H, Vidya Y, Sridhar K, Munirathnam R (2022) Rod shaped zirconium titanate nanoparticles: synthesis, comparison and systematic investigation of structural, photoluminescence, electrochemical sensing and supercapacitor properties. Ceram Int 48:35676–35688

    Article  CAS  Google Scholar 

  33. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  34. Kodous AS, Atta M, Abdel-Hamid GR, Ashry H (2022) Anti-metastatic cancer activity of ultrasonic synthesized reduced graphene oxide/copper composites. Chem Pap 76:373–384

    Article  CAS  Google Scholar 

  35. Atta.M M, Henaish. A, Elbasiony A, Taha E O, Dorgham A, (2022) Structural, optical, and thermal properties of PEO/PVP blend reinforced biochar. Opt Mater 127:112268

    Article  Google Scholar 

  36. Atta MM, Ashry H, Nasr G, El-Rehim A (2021) Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide. Int J Miner Metall Mater 28:1726–1734

    Article  CAS  Google Scholar 

  37. Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Coll Interf Sci 472:145–156

    Article  CAS  Google Scholar 

  38. Qiu L, Yang X, Gou X, Yang W, Ma ZF, Wallace GG, Li D (2010) Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem–A Eur J 16: 10653–10658

  39. Mani V, Chen S-M, Lou B-S (2013) Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. Int J Electrochem Sci 8:11641–11660

    Article  CAS  Google Scholar 

  40. Al-Gaashani R, Najjar A, Zakaria Y, Mansour S, Atieh M (2019) XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45:14439–14448

    Article  CAS  Google Scholar 

  41. Atta M, Habieb M, Mohamed MAEH, Lotfy D, Taha EO (2022) Radiation-assisted reduction of graphene oxide by aloe vera and ginger and their antioxidant and anti-inflammatory roles against male mice liver injury induced by gamma radiation. New J Chem 46:4406–4420

    Article  CAS  Google Scholar 

  42. Cai G, Xu Z, Yang M, Tang B, Wang X (2017) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448

    Article  CAS  Google Scholar 

  43. Huang Z, Qin C, Wang J, Cao L, Ma Z, Yuan Q, Lin Z, Zhang P (2021) Research on high-value utilization of carbon derived from tobacco waste in supercapacitors. Mater 14:1714

    Article  CAS  Google Scholar 

  44. Li X, Tang Y, Song J, Yang W, Wang M, Zhu C, Zhao W, Zheng J, Lin Y (2018) Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244

    Article  CAS  Google Scholar 

  45. Barakzehi M, Montazer M, Sharif F, Norby T, Chatzitakis A (2019) A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochim Acta 305:187–196

    Article  CAS  Google Scholar 

  46. Jost K, Perez CR, McDonough JK, Presser V, Heon M, Dion G, Gogotsi Y (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067

    Article  CAS  Google Scholar 

  47. Shen J, Yang C, Li X, Wang G (2013) High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl Mater interface 5:8467–8476

    Article  CAS  Google Scholar 

  48. Zhi J, Reiser O, Wang Y, Hu A (2017) From natural cotton thread to sewable energy dense supercapacitors. Nanoscale 9:6406–6416

    Article  CAS  Google Scholar 

  49. Qin C, Zheng D, Hu Q, Zhang X, Wang Z, Li Y, Zhu J, Ou JZ, Yang C, Wang Y (2020) Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl Mater Today 19:100539

    Article  Google Scholar 

  50. Huang S, Han Y, Lyu S, Lin W, Chen P, Fang S (2017) A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnol 28:435204

    Article  Google Scholar 

  51. Sadak O, Sundramoorthy AK, Gunasekaran S (2018) Facile and green synthesis of highly conducting graphene paper. Carbon 138:108–117

    Article  CAS  Google Scholar 

  52. Lin X, Li H, Musharavati F, Zalnezhad E, Bae S, Cho B-Y, Hui OK (2017) Synthesis and characterization of cobalt hydroxide carbonate nanostructures. Rsc Adv 7:46925–46931

    Article  CAS  Google Scholar 

  53. Lima RMAP, de Oliveira MCA, de Oliveira HP (2019) Wearable supercapacitors based on graphene nanoplatelets/carbon nanotubes/polypyrrole composites on cotton yarns electrodes. SN Appl Sci 1:325

    Article  CAS  Google Scholar 

  54. Deng L, Gu Y, Gao Y, Ma Z, Fan G (2017) Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors. J Coll Interf Sci 494:355–362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2023R111), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Atta.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, M.M., Zakaly, H.M.H., Almousa, N. et al. Nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite. Carbon Lett. 33, 1639–1648 (2023). https://doi.org/10.1007/s42823-023-00548-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00548-6

Keywords

Navigation