Skip to main content
Log in

Chitosan dendron-cultivated magnetic graphene oxide as novel glycodendrimer for adsorptive removal of sunset yellow from aqueous solutions

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This paper evaluates the adsorptive removal of sunset yellow (SY) from aqueous solutions using a new magnetic glycodendrimer (MGD). To synthesize the MGD, chitosan dendrons were cultivated on amine-functionalized magnetic graphene oxide. A number of analytical methods were employed to physicochemically characterize the synthesized MGD. Batch adsorption conditions were optimized using the Box–Behnken design. An optimized initial SY content of 633 mg/L, an optimized contact time of 33.37 min, and an optimized pH of 3.72 maximized the MGD adsorption capacity to 485 mg/g. The Langmuir isotherm was employed to describe adsorption equilibrium, while adsorption kinetics was studied via the Lagergren kinetics model. The SY adsorption onto the MGD was thermodynamically found to be spontaneous (ΔG° < 0) and exothermic (ΔH° =  – 19.120 kJ/mol), leading to a decreased disorder (ΔS° =  – 54.420 kJ/mol) in the solid–liquid interface. The MGD showed reusability and unique magnetic characteristics. It was concluded that the MGD could be a potential alternative for the adsorptive and magnetic removal of SY from an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J 150(2):403–410. https://doi.org/10.1016/j.cej.2009.01.019

    Article  CAS  Google Scholar 

  2. Ahmad ZU, Yao L, Wang J, Gang DD, Islam F, Lian Q, Zappi ME (2019) Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: Characterizations, adsorption study and adsorption mechanism. Chem Eng J 359:814–826. https://doi.org/10.1016/j.cej.2018.11.174

    Article  CAS  Google Scholar 

  3. Ahmadi Y, Kim K-H (2022) Hyperbranched polymers as superior adsorbent for the treatment of dyes in water. Adv Colloid Interface Sci 302:102633. https://doi.org/10.1016/j.cis.2022.102633

    Article  CAS  Google Scholar 

  4. Banisheykholeslami F, Hosseini M, Najafpour Darzi G (2021) Design of PAMAM grafted chitosan dendrimers biosorbent for removal of anionic dyes: Adsorption isotherms, kinetics and thermodynamics studies. Int J Biol Macromol 177:306–316. https://doi.org/10.1016/j.ijbiomac.2021.02.118

    Article  CAS  Google Scholar 

  5. Borandeh S, Abdolmaleki A, Abolmaali SS, Tamaddon AM (2018) Synthesis, structural and in-vitro characterization of β-cyclodextrin grafted L-phenylalanine functionalized graphene oxide nanocomposite: A versatile nanocarrier for pH-sensitive doxorubicin delivery. Carbohyd Polym 201:151–161. https://doi.org/10.1016/j.carbpol.2018.08.064

    Article  CAS  Google Scholar 

  6. Chwastowski J, Staroń P, Kołoczek H, Banach M (2017) Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber. J Mol Liq 248:981–989. https://doi.org/10.1016/j.molliq.2017.10.152

    Article  CAS  Google Scholar 

  7. de Sá FP, Cunha BN, Nunes LM (2013) Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem Eng J 215–216:122–127. https://doi.org/10.1016/j.cej.2012.11.024

    Article  CAS  Google Scholar 

  8. Depan D, Girase B, Shah JS, Misra RDK (2011) Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7(9):3432–3445. https://doi.org/10.1016/j.actbio.2011.05.019

    Article  CAS  Google Scholar 

  9. Einollahi Peer F, Bahramifar N, Younesi H (2018) Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets. J Taiwan Inst Chem Eng 87:225–240. https://doi.org/10.1016/j.jtice.2018.03.039

    Article  CAS  Google Scholar 

  10. Farjadian F, Ghasemi S, Heidari R, Mohammadi-Samani S (2017) In vitro and in vivo assessment of EDTA-modified silica nano-spheres with supreme capacity of iron capture as a novel antidote agent. Nanomedicine 13(2):745–753. https://doi.org/10.1016/j.nano.2016.10.012

    Article  CAS  Google Scholar 

  11. Fu Y, Wang J, Liu Q, Zeng H (2014) Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal. Carbon 77:710–721. https://doi.org/10.1016/j.carbon.2014.05.076

    Article  CAS  Google Scholar 

  12. Ghaedi M, Mosallanejad N (2014) Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. J Indus Eng Chem 20(3):1085–1096. https://doi.org/10.1016/j.jiec.2013.06.046

    Article  CAS  Google Scholar 

  13. Guan Q, Gao K, Ning P, Miao R, He L (2020) Value-added utilization of paper sludge: Preparing activated carbon for efficient adsorption of Cr(VI) and further hydrogenation of furfural. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140265

    Article  Google Scholar 

  14. Heidarinasab A, Ahmad Panahi H, Faramarzi M, Farjadian F (2016) Synthesis of thermosensitive magnetic nanocarrier for controlled sorafenib delivery. Mater Sci Eng, C 67:42–50. https://doi.org/10.1016/j.msec.2016.05.036

    Article  CAS  Google Scholar 

  15. Hu XJ, Liu YG, Wang H, Chen AW, Zeng GM, Liu SM, Guo YM, Hu X, Li TT, Wang YQ, Zhou L, Liu SH (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep Purif Technol 108:189–195. https://doi.org/10.1016/j.seppur.2013.02.011

    Article  CAS  Google Scholar 

  16. Hussien NA, Işıklan N, Türk M (2018) Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. Mater Chem Phys 211:479–488. https://doi.org/10.1016/j.matchemphys.2018.03.015

    Article  CAS  Google Scholar 

  17. Jadval Ghadam FM, Faramarzi M, Panahi HA, Mousavi Parsa SA (2022) Glucuronic acid-conjugated smart cellulose nanocrystals as novel carrier for gemcitabine delivery. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2022.126862

    Article  Google Scholar 

  18. Jagtap S, Thakre D, Wanjari S, Kamble S, Labhsetwar N, Rayalu S (2009) New modified chitosan-based adsorbent for defluoridation of water. J Colloid Interface Sci 332(2):280–290. https://doi.org/10.1016/j.jcis.2008.11.080

    Article  CAS  Google Scholar 

  19. Jung MR, Horgen FD, Orski SV, Rodriguez C, Beers KL, Balazs GH, Jones TT, Work TM, Brignac KC, Royer SJ, Hyrenbach KD, Jensen BA, Lynch JM (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollut Bull 127:704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061

    Article  CAS  Google Scholar 

  20. Kaur R, Goyal D, Agnihotri S (2021) Chitosan/PVA silver nanocomposite for butachlor removal: Fabrication, characterization, adsorption mechanism and isotherms. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.117906

    Article  Google Scholar 

  21. Kazemi E, Dadfarnia S, Haji Shabani AM, Abbasi A, Rashidian Vaziri MR, Behjat A (2016) Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination. Talanta 147:561–568. https://doi.org/10.1016/j.talanta.2015.10.033

    Article  CAS  Google Scholar 

  22. Kekes T, Kolliopoulos G, Tzia C (2021) Hexavalent chromium adsorption onto crosslinked chitosan and chitosan/β-cyclodextrin beads: Novel materials for water decontamination. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105581

    Article  Google Scholar 

  23. Kuo C-Y, Wu C-H, Wu J-Y (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327(2):308–315. https://doi.org/10.1016/j.jcis.2008.08.038

    Article  CAS  Google Scholar 

  24. Lee JH, Yeo Y (2015) Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 125:75–84. https://doi.org/10.1016/j.ces.2014.08.046

    Article  CAS  Google Scholar 

  25. León O, Muñoz-Bonilla A, Soto D, Pérez D, Rangel M, Colina M, Fernández-García M (2018) Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohyd Polym 194(March):375–383. https://doi.org/10.1016/j.carbpol.2018.04.072

    Article  CAS  Google Scholar 

  26. Li M, Liu Y, Zeng G, Liu S, Hu X, Shu D, Jiang L, Tan X, Cai X, Yan Z (2017) Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism. J Colloid Interface Sci 485:269–279. https://doi.org/10.1016/j.jcis.2016.09.037

    Article  CAS  Google Scholar 

  27. Lima VVC, Dalla Nora FB, Peres EC, Reis GS, Lima ÉC, Oliveira MLS, Dotto GL (2019) Synthesis and characterization of biopolymers functionalized with APTES (3-aminopropyltriethoxysilane) for the adsorption of sunset yellow dye. J Environ Chem Eng 7(5):103410. https://doi.org/10.1016/j.jece.2019.103410

    Article  CAS  Google Scholar 

  28. Machado TS, Crestani L, Marchezi G, Melara F, de Mello JR, Dotto GL, Piccin JS (2022) Synthesis of glutaraldehyde-modified silica/chitosan composites for the removal of water-soluble diclofenac sodium. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118868

    Article  Google Scholar 

  29. Mahmoud ME, Abdelfattah AM, Tharwat RM, Nabil GM (2020) Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: Optimization, kinetics and thermodynamic study. J Mol Liquids 318:114297. https://doi.org/10.1016/j.molliq.2020.114297

    Article  CAS  Google Scholar 

  30. Malik S, Khan A, Rahman G, Ali N, Khan H, Khan S, Sotomayor MDPT (2022) Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environ Res 212:113209. https://doi.org/10.1016/j.envres.2022.113209

    Article  CAS  Google Scholar 

  31. Monajati M, Borandeh S, Hesami A, Mansouri D (2018) Immobilization of L -asparaginase on aspartic acid functionalized graphene oxide nanosheet : Enzyme kinetics and stability studies. Chem Eng J 354:1153–1163. https://doi.org/10.1016/j.cej.2018.08.058

    Article  CAS  Google Scholar 

  32. Niu C, Zhang N, Hu C, Zhang C, Zhang H, Xing Y (2021) Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium(VI) and methyl orange from aqueous solution. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.117644

    Article  Google Scholar 

  33. Ortega-Aguirre S, Díaz-Nava MC, Solache-Ríos M, Muro C, Alvarado Y, García-Sánchez JJ, Pinedo-Hernández SY (2022) Effect of alginate on the removal of yellow 6 by a biopolymer-ferric zeolite composite. Separ Purific Technol 292:120971. https://doi.org/10.1016/j.seppur.2022.120971

    Article  CAS  Google Scholar 

  34. Rebekah A, Sivaselvam S, Viswanathan C, Prabhu D, Gautam R, Ponpandian N (2021) Colloids and Surfaces A : Physicochemical and Engineering Aspects Magnetic nanoparticle-decorated graphene oxide-chitosan composite as an efficient nanocarrier for protein delivery. Colloids Surfaces A Physicochem Eng Aspects 610:125913. https://doi.org/10.1016/j.colsurfa.2020.125913

    Article  CAS  Google Scholar 

  35. Roosta M, Ghaedi M, Sahraei R, Purkait MK (2015) Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: Optimized experimental design. Mater Sci Eng, C 52:82–89. https://doi.org/10.1016/j.msec.2015.03.036

    Article  CAS  Google Scholar 

  36. Safaviyan M, Faramarzi M, Parsa SAM, Karimi H (2022) Tetraethylenepentamine-enriched magnetic graphene oxide as a novel Cr(VI) removal adsorbent. React Funct Polymers 180:105410. https://doi.org/10.1016/j.reactfunctpolym.2022.105410

    Article  CAS  Google Scholar 

  37. Salzano de Luna M, Castaldo R, Altobelli R, Gioiella L, Filippone G, Gentile G, Ambrogi V (2017) Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohyd Polym 177:347–354. https://doi.org/10.1016/j.carbpol.2017.09.006

    Article  CAS  Google Scholar 

  38. Saravanan A, Karishma S, Jeevanantham S, Jeyasri S, Kiruthika AR, Kumar PS, Yaashikaa PR (2020) Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters. Surfaces and Interfaces 20:100520. https://doi.org/10.1016/j.surfin.2020.100520

    Article  CAS  Google Scholar 

  39. Saya L, Gautam D, Malik V, Singh WR, Hooda S (2021) Natural polysaccharide based graphene oxide nanocomposites for removal of dyes from wastewater: a review. J Chem Eng Data 66(1):11–37. https://doi.org/10.1021/acs.jced.0c00743

    Article  CAS  Google Scholar 

  40. Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S (2021) Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water — A comprehensive review. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118604

    Article  Google Scholar 

  41. Soltani A, Faramarzi M, Farjadian F, Parsa SAM, Panahi HA (2022) pH-responsive glycodendrimer as a new active targeting agent for doxorubicin delivery. Int J Biol Macromol 221(September):508–522. https://doi.org/10.1016/j.ijbiomac.2022.09.037

    Article  CAS  Google Scholar 

  42. Turnbull WB, Stoddart JF (2002) Design and synthesis of glycodendrimers. Rev Mol Biotechnol 90(3–4):231–255. https://doi.org/10.1016/S1389-0352(01)00062-9

    Article  CAS  Google Scholar 

  43. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohyd Polym 113:115–130. https://doi.org/10.1016/j.carbpol.2014.07.007

    Article  CAS  Google Scholar 

  44. Vasques ÉDC, Carpiné D, Dagostin JLA, Canteli AMD, Igarashi-Mafra L, Mafra MR, Scheer ADP (2014) Modelling studies by adsorption for the removal of sunset yellow azo dye present in effluent from a soft drink plant. Environ Technol 35(12):1532–1540. https://doi.org/10.1080/09593330.2013.872197

    Article  CAS  Google Scholar 

  45. Wang G, Ma Y, Wei Z, Qi M (2016) Development of multifunctional cobalt ferrite / graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem Eng J 289:150–160. https://doi.org/10.1016/j.cej.2015.12.072

    Article  CAS  Google Scholar 

  46. Wang H, Liu Y, Zeng G, Hu X, Hu X, Li T, Li H, Wang Y, Jiang L (2014) Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohyd Polym 113:166–173. https://doi.org/10.1016/j.carbpol.2014.07.014

    Article  CAS  Google Scholar 

  47. Wawrzkiewicz M (2011) Sorption of Sunset Yellow dye by weak base anion exchanger – kinetic and equilibrium studies. Environ Technol 32(4):455–465. https://doi.org/10.1080/09593330.2010.502188

    Article  CAS  Google Scholar 

  48. Wojtoniszak M, Chen X, Kalenczuk RJ, Wajda A, Łapczuk J, Kurzewski M, Drozdzik M, Chu PK, Borowiak-Palen E (2012) Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surfaces B Biointerfaces 89:79–85. https://doi.org/10.1016/j.colsurfb.2011.08.026

    Article  CAS  Google Scholar 

  49. Xu D, Kong Q, Wang X, Lou T (2022) Preparation of carboxymethyl cellulose/chitosan-CuO giant vesicles for the adsorption and catalytic degradation of dyes. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2022.119630

    Article  Google Scholar 

  50. Xue H, Gao X, Seliem MK, Mobarak M, Dong R, Wang X, Fu K, Li Q, Li Z (2023) Efficient adsorption of anionic azo dyes on porous heterostructured MXene/biomass activated carbon composites: Experiments, characterization, and theoretical analysis via advanced statistical physics models. Chem Eng J 451:138735. https://doi.org/10.1016/j.cej.2022.138735

    Article  CAS  Google Scholar 

  51. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: A review. Adv Coll Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  52. Yakout AA, Mahmoud ME (2018) Fabrication of magnetite-functionalized-graphene oxide and hexadecyltrimethyl ammonium bromide nanocomposite for efficient nanosorption of sunset yellow. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2018.06.060

    Article  Google Scholar 

  53. Yayayürük O, Erdem Yayayürük A, Özmen P, Karagöz B (2020) PDMAEMA grafted microspheres as an efficient adsorbent for the removal of Sunset yellow from pharmaceutical preparations, beverages and waste water. Eur Polym J 141:110089. https://doi.org/10.1016/j.eurpolymj.2020.110089

    Article  CAS  Google Scholar 

  54. Yin M, Li X, Liu Y, Ren X (2021) Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118129

    Article  Google Scholar 

  55. Zhu X, Li J, Luo J, Jin Y, Zheng D (2017) Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. J Taiwan Inst Chem Eng 70:200–208. https://doi.org/10.1016/j.jtice.2016.10.049

    Article  CAS  Google Scholar 

  56. Ranjbari S, Ayati A, Niknam Shahrak M, Tanhaei B, Hamidi Tabrizi S (2023) Design of [BmIm] 3PW12O40 ionic liquid encapsulated-ZIF-8 nanocomposite for cationic dye adsorptive removal: modeling by response surface methodology. Indust Eng Chem Res. https://doi.org/10.1021/acs.iecr.2c02943

    Article  Google Scholar 

  57. Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M (2022) Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 366:120303

    Article  CAS  Google Scholar 

  58. Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Karaman C (2022) Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. Environ Res 203:111753

    Article  CAS  Google Scholar 

  59. Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Sillanpää M (2021) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. J Clean Product 291:125880

    Article  CAS  Google Scholar 

  60. Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Shokouhimehr M (2022) Magnetite metal-organic frameworks: applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorganic Chem 61(40):15747–15783

    Article  CAS  Google Scholar 

  61. Alamgholiloo H, Pesyan NN, Mohammadi R, Rostamnia S, Shokouhimehr M (2021) Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite. J Environ Chem Eng 9(4):105486

    Article  CAS  Google Scholar 

  62. Alamgholiloo H, Rostamnia S, Zhang K, Lee TH, Lee YS, Varma RS, Shokouhimehr M (2020) Boosting aerobic oxidation of alcohols via synergistic effect between TEMPO and a composite Fe3O4/Cu-BDC/GO nanocatalyst. ACS Omega 5(10):5182–5191

    Article  CAS  Google Scholar 

  63. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium (VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manage 169:8–17

    Article  CAS  Google Scholar 

  64. Dolatyari L, Yaftian MR, Rostamnia S (2016) Adsorption characteristics of Eu (III) and Th (IV) ions onto modified mesoporous silica SBA-15 materials. J Taiwan Inst Chem Eng 60:174–184

    Article  CAS  Google Scholar 

  65. Dindar MH, Yaftian MR, Pilehvari M, Rostamnia S (2015) SBA-15 mesoporous materials decorated with organic ligands: use as adsorbents for heavy metal ions. J Iran Chem Soc 12:561–572

    Article  Google Scholar 

  66. Kadhim MM, Rheima AM, Abbas ZS, Jlood HH, Hachim SK, Kadhum WR (2023) Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Adv 13(4):2487–2500

    Article  CAS  Google Scholar 

  67. Smaisim GF, Abed AM, Al-Madhhachi H et al (2023) Graphene-based important carbon structures and nanomaterials for energy storage applications as chemical capacitors and supercapacitor electrodes: a review. BioNanoSci 13:219–248. https://doi.org/10.1007/s12668-022-01048-z

    Article  Google Scholar 

  68. Abdelbasset WK, Jasim SA, Bokov DO et al (2022) Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett 32:927–951. https://doi.org/10.1007/s42823-022-00338-6

    Article  Google Scholar 

  69. Salahdin OD, Sayadi H, Solanki R et al (2022) Graphene and carbon structures and nanomaterials for energy storage. Appl Phys A 128:703. https://doi.org/10.1007/s00339-022-05789-2

    Article  CAS  Google Scholar 

  70. Zhang L, Han Y, Shu H, Zhang L, Han Z, Yang X, Chen Y (2022) Effect of bimetallic modification on blast furnace slag and its application in low-temperature selective catalytic reduction. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.7298

    Article  Google Scholar 

  71. Wang Z, Liu X, Ni S, Zhuang X, Lee T (2021) Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system. Water Res 202:117491. https://doi.org/10.1016/j.watres.2021.117491

    Article  CAS  Google Scholar 

  72. Liu W, Huang F, Liao Y, Zhang J, Ren G, Zhuang Z, Wang C (2008) Treatment of CrVI-Containing Mg(OH)2 Nanowaste. Angewandte Chemie (International ed.) 47(30):5619–5622. https://doi.org/10.1002/anie.200800172

    Article  CAS  Google Scholar 

  73. Peng X, Zheng J, Liu Q, Hu Q, Sun X, Li J, Lin Z (2021) Efficient removal of iron from red gypsum via synergistic regulation of gypsum phase transformation and iron speciation. Sci Total Environ 791:148319. https://doi.org/10.1016/j.scitotenv.2021.148319

    Article  CAS  Google Scholar 

  74. Wang Y, Sun T, Tong L, Gao Y, Zhang H, Zhang Y, Zhu S (2023) Non-free Fe dominated PMS activation for enhancing electro-Fenton efficiency in neutral wastewater. J Electroanalyt Chem 928:117062. https://doi.org/10.1016/j.jelechem.2022.117062

    Article  CAS  Google Scholar 

  75. Zhang L, Li Y, Guo J, Kan Z, Jia Y (2023) Catalytic ozonation mechanisms of Norfloxacin using Cu–CuFe2O4. Environ Res 216:114521. https://doi.org/10.1016/j.envres.2022.114521

    Article  CAS  Google Scholar 

  76. Shi M, Wang R, Li L, Chen N, Xiao P, Yan C, Yan X (2022) Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv Fun Mater. https://doi.org/10.1002/adfm.202209777

    Article  Google Scholar 

  77. Bai B, Bai F, Sun S (2023) Adsorption mechanism of shell powders on heavy metal ions Pb2+/Cd2+ and the purification efficiency for contaminated soils. Front Earth Sci. https://doi.org/10.3389/feart.2022.1071228

    Article  Google Scholar 

  78. Bai B, Rao D, Chang T, Guo Z (2019) A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J Hydrol (Amsterdam) 578:124080. https://doi.org/10.1016/j.jhydrol.2019.124080

    Article  CAS  Google Scholar 

  79. Zhang Z, Yang F, Zhang H, Zhang T, Wang H, Xu Y, Ma Q (2021) Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater Character. https://doi.org/10.1016/j.matchar.2020.110732

    Article  Google Scholar 

  80. Sun S, Deng P, Peng C, Ji H, Mao L, Peng L (2022) Selenium-modified chitosan induces HepG2 Cell apoptosis and differential protein analysis. Cancer Manag Res. https://doi.org/10.2147/CMAR.S382546

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at Yasuj Branch, Islamic Azad University. The authors wish to thank the Islamic Azad University, Yasuj Branch, for financial support.

Funding

There is no funding to report for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Faramarzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavikia, S.A., Faramarzi, M., Parsa, S.A.M. et al. Chitosan dendron-cultivated magnetic graphene oxide as novel glycodendrimer for adsorptive removal of sunset yellow from aqueous solutions. Carbon Lett. 33, 1875–1894 (2023). https://doi.org/10.1007/s42823-023-00502-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00502-6

Keywords

Navigation