Skip to main content
Log in

Research progress and the prospect of CO2 hydrogenation with dielectric barrier discharge plasma technology

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In recent years, people are increasingly interested in CO2 hydrogenation to produce value-added chemicals and fuels (CH4, CH3OH, etc.). In the quest for an efficient treatment in CO2 methanation and methanolization, several technologies have been practiced, and DBD plasma technology gain attention due to its easily handling, mild operating conditions, strong activation ability, and high product selectivity. In addition, its reaction mechanism and the effect of packing materials and reaction parameters are still controversial. To address these problems efficiently, a summary of the reaction mechanism is presented. A discussion on plasma-catalyzed CO2 hydrogenation including packing materials, reaction parameters, and optimizing methods is addressed. In this review, the overall status and recent findings in DBD plasma-catalyzed CO2 hydrogenation are presented, and the possible directions of future development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81. https://doi.org/10.1039/B912904A

    Article  CAS  Google Scholar 

  2. Li S, Guo L, Ishihara T (2019) Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst. Catal Today. https://doi.org/10.1016/j.cattod.2019.01.015

    Article  Google Scholar 

  3. Chen W, Yan S (2022) The decoupling relationship between CO2 emissions and economic growth in the Chinese mining industry under the context of carbon neutrality. J Cleaner Prod 379:134692. https://doi.org/10.1016/j.jclepro.2022.134692

    Article  CAS  Google Scholar 

  4. Sgouridis S, Carbajales-Dale M, Csala D, Chiesa M, Bardi U (2019) Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat Energy 4:456–465. https://doi.org/10.1038/s41560-019-0365-7

    Article  CAS  Google Scholar 

  5. Mac Dowell N, Fennell PS, Shah N (2017) Maitland, The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7:243–249. https://doi.org/10.1038/NCLIMATE3231

    Article  CAS  Google Scholar 

  6. Bhatia SK, Bhatia RK, Jeon JM, Kumar G, Yang YH (2019) Carbon dioxide capture and bioenergy production using biological system - A review. Renew Sust Energ Rev 110:143–158. https://doi.org/10.1016/j.rser.2019.04.070

    Article  CAS  Google Scholar 

  7. Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D, AlBahily K (2020) Vinu, Emerging trends in porous materials for CO2 capture and conversion. Chem Soc Rev. https://doi.org/10.1039/D0CS00075B

    Article  Google Scholar 

  8. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Trusler JPM, Webley P, Wilcox J, Mac Dowell N (2018) Carbon capture and storage (CCS) the way forward. Energy Environ Sci 11:1062–1176. https://doi.org/10.1039/C7EE02342A

    Article  CAS  Google Scholar 

  9. Wang L, Yi Y, Guo H, Tu X (2017) Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catal 8:90–100. https://doi.org/10.1021/acscatal.7b02733

    Article  CAS  Google Scholar 

  10. Di Chiara A, Chiarella F, Savonitto S, Lucci D, Bolognese L, De Servi S, Greco C, Boccanelli A, Zonzin P, Coccolini S, Maggioni AP, Investigators B (2003) Epidemiology of acute myocardial infarction in the Italian CCU network: the BLITZ study. Eur Heart J 24:1616–1629. https://doi.org/10.1016/S0195-668X(03)00278-1

    Article  Google Scholar 

  11. Weatherbee GD, Bartholomew CH (1982) Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J Catal 77:460–472. https://doi.org/10.1016/0021-9517(82)90186-5

    Article  CAS  Google Scholar 

  12. Lee WJ, Li C, Prajitno H, Yoo J, Patel J, Yang Y, Lim S (2020) Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal Today. https://doi.org/10.1016/j.cattod.2020.02.017

    Article  Google Scholar 

  13. Ting KW, Toyao T, Siddiki SMAH, Shimizu K (2019) Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported re catalysts. ACS Catal 9:3685–3693. https://doi.org/10.1021/acscatal.8b04821

    Article  CAS  Google Scholar 

  14. Li YY, Wei ZH, Fan JB, Li ZJ, Yao HC (2019) Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS. Appl Surf Sci 483:442–452. https://doi.org/10.1016/j.apsusc.2019.03.333

    Article  CAS  Google Scholar 

  15. Alissandratos A, Easton CJ (2015) Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 11:2370–2387. https://doi.org/10.3762/bjoc.11.259

    Article  CAS  Google Scholar 

  16. Wang Y, Li M, Zhao Z, Liu W (2015) Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions. J Mol Catal B Enzym 116:89–94. https://doi.org/10.1016/j.molcatb.2015.03.014

    Article  CAS  Google Scholar 

  17. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA, Morris RH, Peden CH, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JN, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658. https://doi.org/10.1021/cr300463y

    Article  CAS  Google Scholar 

  18. Kattel S, Yu W, Yang X, Yan B, Huang Y, Wan W, Liu P, Chen JG (2016) CO2 Hydrogenation over oxide-supported PtCo catalysts: the role of the oxide support in determining the product selectivity. Angew Chem 55:7968–7973. https://doi.org/10.1002/anie.201601661

    Article  CAS  Google Scholar 

  19. Li Q, Rao X, Sheng J, Xu J, Yi J, Liu Y, Zhang J (2018) Energy storage through CO2 electroreduction A brief review of advanced Sn-based electrocatalysts and electrodes. J CO2 Util 27:48–59. https://doi.org/10.1016/j.jcou.2018.07.004

    Article  CAS  Google Scholar 

  20. Waldie KM, Flajslik KR, McLoughlin E, Chidsey CE, Waymouth RM (2017) Electrocatalytic alcohol oxidation with ruthenium transfer hydrogenation catalysts. J Am Chem Soc 139:738–748. https://doi.org/10.1021/jacs.6b09705

    Article  CAS  Google Scholar 

  21. Feng JP, Zeng SJ, Feng JQ, Dong HF, Zhang XP (2018) CO2 electroreduction in ionic liquids: a review. Chin J Chem 36:961–970. https://doi.org/10.1002/cjoc.201800252

    Article  CAS  Google Scholar 

  22. Ma X, Li S, Ronda-Lloret M, Chaudhary R, Lin L, van Rooij G, Gallucci F, Rothenberg G, Raveendran Shiju N, Hessel V (2018) Plasma assisted catalytic conversion of CO2 and H2O Over Ni/Al2O3 in a DBD Reactor. Plasma Chem Plasma Process 39:109–124. https://doi.org/10.1007/s11090-018-9931-1

    Article  CAS  Google Scholar 

  23. Snoeckx R, Bogaerts A (2017) Plasma technology - a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863. https://doi.org/10.1039/C6CS00066E

    Article  CAS  Google Scholar 

  24. Aerts R, Somers W, Bogaerts A (2015) Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. Chemsuschem 8:702–716. https://doi.org/10.1002/cssc.201402818

    Article  CAS  Google Scholar 

  25. Lu N, Zhang C, Shang K, Jiang N, Li J, Wu Y (2019) Dielectric barrier discharge plasma assisted CO2 conversion: understanding the effects of reactor design and operating parameters. J Phys D Appl Phys 52:224003. https://doi.org/10.1088/1361-6463/ab0ebb

    Article  CAS  Google Scholar 

  26. Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B (2010) Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Sci Technol 19:034015. https://doi.org/10.1088/0963-0252/19/3/034015

    Article  CAS  Google Scholar 

  27. Tu X, Whitehead JC (2012) Whitehead, Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Appl Catal B 125:439–448. https://doi.org/10.1016/j.apcatb.2012.06.006

    Article  CAS  Google Scholar 

  28. Dębek R, Azzolina-Jury F, Travert A, Maugé F (2019) A review on plasma-catalytic methanation of carbon dioxide – Looking for an efficient catalyst. Renew Sust Energy Rev 116:109427. https://doi.org/10.1016/j.rser.2019.109427

    Article  CAS  Google Scholar 

  29. Bai YH, Chen JR, Li XY, Hang CH (2009) Non-thermal plasmas chemistry as a tool for environmental pollutants abatement. Rev Environ Contam Toxicol 201:117–136. https://doi.org/10.1007/978-1-4419-0032-6_4

    Article  CAS  Google Scholar 

  30. Zhao T, Ullah N, Hui Y, Li Z (2019) Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks. Front Chem Sci Eng 13:444–457. https://doi.org/10.1007/s11705-019-1811-6

    Article  CAS  Google Scholar 

  31. de la Fuente JF, Moreno SH, Stankiewicz AI, Stefanidis GD (2017) On the improvement of chemical conversion in a surface-wave microwave plasma reactor for CO2 reduction with hydrogen (The Reverse Water-Gas Shift reaction). Int J Hydrogen Energy 42:12943–12955. https://doi.org/10.1016/j.ijhydene.2017.04.040

    Article  CAS  Google Scholar 

  32. Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree MP (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aa5616

    Article  Google Scholar 

  33. Niu GH, Qin Y, Li WW, Duan YX (2019) Investigation of CO2 splitting process under atmospheric pressure using multi-electrode cylindrical DBD plasma reactor. Plasma Chem Plasma Process 39:809–824. https://doi.org/10.1007/s11090-019-09955-y

    Article  CAS  Google Scholar 

  34. Belov I, Paulussen S, Bogaerts A (2016) Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sour Sci Technol 25:015023. https://doi.org/10.1088/0963-0252/25/1/015023

    Article  CAS  Google Scholar 

  35. Singha RK, Yadav A, Agrawal A, Shukla A, Adak S, Sasaki T, Bal R (2016) Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Appl Catal B 191:165–178. https://doi.org/10.1016/j.apcatb.2016.03.029

    Article  CAS  Google Scholar 

  36. Zhang K, Zhang G, Liu X, Phan AN, Luo K (2017) A study on CO2 decomposition to CO and O2 by the combination of catalysis and dielectric-barrier discharges at low temperatures and ambient pressure. Ind Eng Chem Res 56:3204–3216. https://doi.org/10.1021/acs.iecr.6b04570

    Article  CAS  Google Scholar 

  37. Liu M, Yi Y, Wang L, Guo H, Bogaerts A (2019) Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis. Catalysts 9:275. https://doi.org/10.3390/catal9030275

    Article  CAS  Google Scholar 

  38. Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Reniers F, Bogaerts A (2016) DBD in burst mode: solution for more efficient CO2 conversion? Plasma Sources Sci Technol 25:055005. https://doi.org/10.1088/0963-0252/25/5/055005

    Article  CAS  Google Scholar 

  39. Chen H, Mu Y, Shao Y, Chansai S, Xiang H, Jiao Y, Hardacre C, Fan X (2019) Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE J. https://doi.org/10.1002/aic.16853

    Article  Google Scholar 

  40. Bogaerts A, Berthelot A, Heijkers S, Kolev S, Snoeckx R, Sun S, Trenchev G, Van Laer K, Wang W (2017) CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Sci Technol 26:063001. https://doi.org/10.1088/1361-6595/aa6ada

    Article  CAS  Google Scholar 

  41. Lee CJ, Lee DH, Kim T (2017) Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catal Today 293:97–104. https://doi.org/10.1016/j.cattod.2017.01.022

    Article  CAS  Google Scholar 

  42. Ozkan A, Dufour T, Bogaerts A, Reniers F (2016) How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD? Plasma Sour Sci Technol 25:045016. https://doi.org/10.1088/0963-0252/25/4/045016

    Article  CAS  Google Scholar 

  43. De Bie C, van Dijk J, Bogaerts A (2016) CO2 hydrogenation in a dielectric barrier discharge plasma revealed. J Phys Chem C 120:25210–25224. https://doi.org/10.1021/acs.jpcc.6b07639

    Article  CAS  Google Scholar 

  44. Mei DH, Ashford B, He YL, Tu X (2017) Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports. Plasma Process Polym. https://doi.org/10.1002/ppap.201600076

    Article  Google Scholar 

  45. Duan XF, Hu ZY, Li YP, Wang BW (2015) Effect of Dielectric Packing Materials on the Decomposition of Carbon Dioxide Using DBD Microplasma Reactor. AIChE J 61:898–903. https://doi.org/10.1002/aic.14682

    Article  CAS  Google Scholar 

  46. Zhu S, Zhou A, Yu F, Dai B, Ma C (2019) Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Sci Technol 21:085504. https://doi.org/10.1088/2058-6272/ab15e5

    Article  CAS  Google Scholar 

  47. Jiang N, Lu N, Shang K, Li J, Wu Y (2013) Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. J Hazard Mater 262:387–393. https://doi.org/10.1016/j.jhazmat.2013.08.072

    Article  CAS  Google Scholar 

  48. Ray D, Saha R, Subrahmanyam C (2017) DBD plasma assisted CO2 decomposition: influence of diluent gases. Catalysts 7:244. https://doi.org/10.3390/catal7090244

    Article  CAS  Google Scholar 

  49. Belov I, Paulussen S, Bogaerts A (2016) Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/25/1/015023

    Article  Google Scholar 

  50. Mora EY, Sarmiento A, Vera E (2016) Vera, Alumina and quartz as dielectrics in a dielectric barrier discharges DBD system for CO2 hydrogenation. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/687/1/012020

    Article  Google Scholar 

  51. Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A (2017) CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis. Chem Eng J 326:477–488. https://doi.org/10.1016/j.cej.2017.05.177

    Article  CAS  Google Scholar 

  52. Zhou A, Chen D, Ma C, Yu F, Dai B (2018) DBD plasma-ZrO2 catalytic decomposition of CO2 at low temperatures. Catalysts 8:256. https://doi.org/10.3390/catal8070256

    Article  CAS  Google Scholar 

  53. Zeng Y, Tu X (2016) Plasma-catalytic CO2 hydrogenation at low temperatures. IEEE Trans Plasma Sci 44:405–411. https://doi.org/10.1109/TPS.2015.2504549

    Article  CAS  Google Scholar 

  54. Gallon HJ, Tu X, Whitehead JC (2012) Effects of reactor packing materials on H2 production by CO2 reforming of CH4 in a dielectric barrier discharge. Plasma Process Polym 9:90–97. https://doi.org/10.1002/ppap.201100130

    Article  CAS  Google Scholar 

  55. Chiper AS, Chen W, Mejlholm O, Dalgaard P, Stamate E (2011) Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples. Plasma Sour Sci. Technol 20:025008. https://doi.org/10.1088/0963-0252/20/2/025008

    Article  CAS  Google Scholar 

  56. Xu Y, Jin H, Hirano T, Matsushita Y, Zhang J (2019) Characterization of Ni3Sn intermetallic nanoparticles fabricated by thermal plasma process and catalytic properties for methanol decomposition. Sci Technol Adv Mater 20:622–631. https://doi.org/10.1080/14686996.2019.1622447

    Article  CAS  Google Scholar 

  57. Lu N, Sun DF, Zhang CK, Jiang N, Shang KF, Bao XD, Li J, Wu Y (2018) CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes. J Phys D Appl Phys 51(9):094001. https://doi.org/10.1088/1361-6463/aaa919

    Article  CAS  Google Scholar 

  58. Mei DH, Tu X (2017) Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design. J CO2 Util 19:68–78. https://doi.org/10.1016/j.jcou.2017.02.015

    Article  CAS  Google Scholar 

  59. Mei D, He Y-L, Liu S, Yan J, Tu X (2016) Optimization of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments. Plasma Process Polym 13:544–556. https://doi.org/10.1002/ppap.201500159

    Article  CAS  Google Scholar 

  60. Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2016) The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2. Plasma Sour Sci Technol 25(2):025013. https://doi.org/10.1088/0963-0252/25/2/025013

    Article  Google Scholar 

  61. Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2016) The influence of power and frequency on the filamentary behavior of a flowing DBD-application to the splitting of CO2. Plasma Sour. Sci. Technol 25(2):025013. https://doi.org/10.1088/0963-0252/25/2/025013

    Article  Google Scholar 

  62. Chaudhary R, van Rooij G, Li S, Wang Q, Hensen E, Hessel V (2020) Low-temperature, atmospheric pressure reverse water-gas shift reaction in dielectric barrier plasma discharge, with outlook to use in relevant industrial processes. Chem Eng Sci 225:115803. https://doi.org/10.1016/j.ces.2020.115803

    Article  CAS  Google Scholar 

  63. Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis. Appl Catal B 182:525–532. https://doi.org/10.1016/j.apcatb.2015.09.052

    Article  CAS  Google Scholar 

  64. Bogaerts A, Neyts E, Gijbets R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta Part B 57:609–658. https://doi.org/10.1016/S0584-8547(01)00406-2

    Article  Google Scholar 

  65. Taghvaei H, Kheirollahivash M, Ghasemi M, Rostami P, Rahimpour MR (2014) Noncatalytic upgrading of anisole in an atmospheric DBD plasma reactor: effect of carrier gas type, voltage, and frequency. Energy Fuels 28:2535–2543. https://doi.org/10.1021/ef402571j

    Article  CAS  Google Scholar 

  66. Zeng YX, Tu X (2017) Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: effect of argon addition. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aa64bb

    Article  Google Scholar 

  67. Liu L, Zhang Z, Das S, Xi S, Kawi S (2020) LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: Effect of calcination temperature. Energy Convers Manage 206:112475. https://doi.org/10.1016/j.enconman.2020.112475

    Article  CAS  Google Scholar 

  68. Nakayama T, Ichikuni N, Sato S, Nozaki F (1997) Ni/MgO catalyst prepared using citric acid for hydrogenation of carbon dioxide. Appl Catal A 25:185–199. https://doi.org/10.1016/S0926-860X(96)00399-7

    Article  Google Scholar 

  69. Xu S, Chansai S, Shao Y, Xu S, Wang YC, Haigh S, Mu Y, Jiao Y, Stere CE, Chen H, Fan X, Hardacre C (2020) Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide. Appl Catal B 268:118752. https://doi.org/10.1016/j.apcatb.2020.118752

    Article  CAS  Google Scholar 

  70. Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez ME, Da Costa P (2016) Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int J Hydrogen Energy 41:11584–11592. https://doi.org/10.1016/j.ijhydene.2016.02.020

    Article  CAS  Google Scholar 

  71. Nizio M, Benrabbah R, Krzak M, Debek R, Motak M, Cavadias S, Galvez ME, Da Costa P (2016) Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catal Commun 83:14–17. https://doi.org/10.1016/j.catcom.2016.04.023

    Article  CAS  Google Scholar 

  72. Zhou R, Rui N, Fan Z, Liu C-J (2016) Effect of the structure of Ni/TiO2 catalyst on CO2 methanation. Int J Hydrogen Energy 41:22017–22025. https://doi.org/10.1016/j.ijhydene.2016.08.093

    Article  CAS  Google Scholar 

  73. Chen H, Mu Y, Shao Y, Chansai S, Xu S, Stere CE, Xiang H, Zhang R, Jiao Y, Hardacre C, Fan X (2019) Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation, Catal. Sci Technol 9:4135–4145. https://doi.org/10.1039/C9CY00590K

    Article  CAS  Google Scholar 

  74. Lan L, Wang A, Wang Y (2019) CO2 hydrogenation to lower hydrocarbons over ZSM-5-supported catalysts in a dielectric-barrier discharge plasma reactor. Catal Commun 130:105761. https://doi.org/10.1016/j.catcom.2019.105761

    Article  CAS  Google Scholar 

  75. Xu W, Zhang X, Dong M, Zhao J, Di L (2019) Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane. Plasma Sci Technol 21:044004. https://doi.org/10.1088/2058-6272/aaf9d2

    Article  CAS  Google Scholar 

  76. Xu W, Dong M, Di L, Zhang X (2019) A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomater. https://doi.org/10.3390/nano9101432

    Article  Google Scholar 

  77. Sivachandiran L, Costa PD, Khacef A (2020) CO2 reforming in CH4 over Ni/γ-Al2O3 nano catalyst: effect of cold plasma surface discharge. Appl Sur Sci 501:144175. https://doi.org/10.1016/j.apsusc.2019.144175

    Article  CAS  Google Scholar 

  78. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17:2647–2663. https://doi.org/10.1039/C5GC00119F

    Article  CAS  Google Scholar 

  79. Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C (2018) A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. Rsc Adv 8:7651–7669. https://doi.org/10.1039/C7RA13546G

    Article  CAS  Google Scholar 

  80. Liu HZ, Zou XJ, Wang XG, Lu XG, Ding WZ (2012) Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. J Nat Gas Chem 21:703–707. https://doi.org/10.1016/S1003-9953(11)60422-2

    Article  CAS  Google Scholar 

  81. Jin LJ, Li Y, Lin P, Hu HQ (2014) CO2 reforming of methane on Ni/γ-Al2O3 catalyst prepared by dielectric barrier discharge hydrogen plasma. Int J Hydrogen Energy 39:5756–5763. https://doi.org/10.1016/j.ijhydene.2014.01.171

    Article  CAS  Google Scholar 

  82. Jia X, Zhang X, Rui N, Hu X, Liu CJ (2019) Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl Catal B 244:159–169. https://doi.org/10.1016/j.apcatb.2018.11.024

    Article  CAS  Google Scholar 

  83. Younas M, Loong Kong L, Bashir MJK, Nadeem H, Shehzad A, Sethupathi S (2016) Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy Fuels 30:8815–8831. https://doi.org/10.1021/acs.energyfuels.6b01723

    Article  CAS  Google Scholar 

  84. Li Z, Zhao T, Zhang L (2018) Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation. Appl Organomet Chem 32:e4328. https://doi.org/10.1002/aoc.4328

    Article  CAS  Google Scholar 

  85. Wierzbicki D, Moreno MV, Ognier S, Motak M, Grzybek T, Da Costa P, Gálvez ME (2019) Ni-Fe layered double hydroxide derived catalysts for non-plasma and DBD plasma-assisted CO2 methanation. Inter J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.06.095

    Article  Google Scholar 

  86. Zhang Z, Ding H, Pan W, Ma J, Zhang K, Zhao Y, Song J, Wei C, Lin F (2023) Research progress of Metal-organic frameworks (MOFs) for CO2 conversion in CCUS. J Energy Inst. https://doi.org/10.1016/j.joei.2023.101226

    Article  Google Scholar 

  87. Sperling D (2007) Beyond oil and gas: the methanol economy. Energ J 28:178–179. https://doi.org/10.1002/anie.200462121

    Article  CAS  Google Scholar 

  88. Olah GA (2004) After oil and gas: methanol economy. Catal Lett. https://doi.org/10.1023/B:CATL.0000017043.93210.9c

    Article  Google Scholar 

  89. Olah GA, Goeppert A, Prakash GK (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498. https://doi.org/10.1021/jo801260f

    Article  CAS  Google Scholar 

  90. Xu J, Su X, Liu X, Pan X, Pei G, Huang Y, Wang X, Zhang T, Geng H (2016) Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: catalyst structure dependence of methanol selectivity. Appl Catal A 514:51–59. https://doi.org/10.1016/j.apcata.2016.01.006

    Article  CAS  Google Scholar 

  91. Chen WH, Lin BJ, Lee HM, Huang MH (2012) One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity. Appl Energy 98:92–101. https://doi.org/10.1016/j.apenergy.2012.02.082

    Article  CAS  Google Scholar 

  92. Dubois JL, Sayama K, Arakawa H (1992) Conversion of CO2 to dimethylether and methanol over hybrid catalysts. Chem Lett 21:1115–1118. https://doi.org/10.1246/cl.1992.1115

    Article  Google Scholar 

  93. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  Google Scholar 

  94. Zhao J, Li YX, Zhu YQ, Wang Y, Wang CY (2016) Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Appl Catal A 510:34–41. https://doi.org/10.1016/j.apcata.2015.11.001

    Article  CAS  Google Scholar 

  95. Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC (2011) Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem 50:2162–2165. https://doi.org/10.1002/ange.201007108

    Article  CAS  Google Scholar 

  96. Deng K, Hu B, Lu Q, Hong X (2017) Cu/g-C3N4 modified ZnO/Al2O3 catalyst: methanol yield improvement of CO2 hydrogenation. Catal Commun 100:81–84. https://doi.org/10.1016/j.catcom.2017.06.041

    Article  CAS  Google Scholar 

  97. Li MMJ, Zeng ZY, Liao FL, Hong XL, Tsang SCE (2016) Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J Catal 343:157–167. https://doi.org/10.1016/j.jcat.2016.03.020

    Article  CAS  Google Scholar 

  98. Wang ZJ, Song H, Pang H, Ning YX, Dao TD, Wang Z, Chen HL, Weng YX, Fu Q, Nagao T, Fang YM, Ye JH (2019) Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl Catal B 250:10–16. https://doi.org/10.1016/j.apcatb.2019.03.003

    Article  CAS  Google Scholar 

  99. Zhu S, Jiang B, Cai WB, Shao M (2017) Direct Observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J Am Chem Soc 139:15664–15667. https://doi.org/10.1021/jacs.7b10462

    Article  CAS  Google Scholar 

  100. Luo W, Nie X, Janik MJ, Asthagiri A (2015) facet dependence of CO2 reduction paths on Cu electrodes. acs catal 6:219–229. https://doi.org/10.1021/acscatal.5b01967

    Article  CAS  Google Scholar 

  101. Perez-Gallent E, Figueiredo MC, Calle-Vallejo F, Koper MT (2017) Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew Chem 56:3621–3624. https://doi.org/10.1002/anie.201700580

    Article  CAS  Google Scholar 

  102. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ (2017) Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc 139:18093–18100. https://doi.org/10.1021/jacs.7b10817

    Article  CAS  Google Scholar 

  103. Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJ (2017) Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J Am Chem Soc 139:47–50. https://doi.org/10.1021/jacs.6b10740

    Article  CAS  Google Scholar 

  104. Kattel S, Yan B, Yang Y, Chen JG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J Am Chem Soc 138:12440–12450. https://doi.org/10.1021/jacs.6b05791

    Article  CAS  Google Scholar 

  105. Luo Z, Tian SS, Wang Z (2020) Enhanced activity of Cu/ZnO/C catalysts prepared by cold plasma for Co2 hydrogenation to methanol. Ind Eng Chem Res 59:5657–5663. https://doi.org/10.1021/acs.iecr.9b06996

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Subproject of National Key Research and Development Program (2018YFB0604204) and Shanghai Science and Technology Project (21DZ1207200).

Funding

Shanghai University of Electric Power, Yangpu District, 200090, Ziyi zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglei Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ding, H., Zhou, Q. et al. Research progress and the prospect of CO2 hydrogenation with dielectric barrier discharge plasma technology. Carbon Lett. 33, 973–987 (2023). https://doi.org/10.1007/s42823-023-00493-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00493-4

Keywords

Navigation