Skip to main content

Advertisement

Log in

Hot deformation behavior of CNTs/Al-Li composite prepared by powder metallurgy

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

CNTs/Al-Li composite was first prepared by hot-pressed sintering from Al-Li alloy powder and CNTs solution, and then the hot compression tests were performed on MMS-100 thermal simulator at strain rate range of 0.01– 10 s−1, deformation temperature range of 350–500 °C, and total deformation amount of 60%. True stress–strain curves were plotted, and constitutive equation as well as hot processing maps were successfully confirmed based on Arrhenius constitutive model and Prasad instability criterion. Results show that CNTs/Al-Li composite have a very poor hot deformation ability and narrow processing region, which is strain rate range of 0.1–1 s−1 and deformation temperature range of 360–400 °C. Hot extrusion experiment was carried out and the processing parameters were selected according to the established hot processing map, and an improvement on strength and a good balance between strength and plasticity can be obtained, which is about 650 MPa for tensile strength and 9% for elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. Pu QQ, Jia ZH, Kong YP, Yang QB, Zhang ZQ, Fan X, Zhang H, Lin L, Liu Q (2020) Microstructure and mechanical properties of 2195 alloys prepared by traditional casting and spray forming. Mater Sci Eng A 784:139337. https://doi.org/10.1016/j.msea.2020.139337

    Article  CAS  Google Scholar 

  2. Chen F, Zhan LH, Gao TJ, Li H, Zhou C (2021) Creep aging properties variation and microstructure evolution for 2195 Al–Li alloys with various loading rates. Mater Sci Eng A 827:142055. https://doi.org/10.1016/j.msea.2021.142055

    Article  CAS  Google Scholar 

  3. Zhao BW, Yang Q, Wu L, Li XF, Wang ML, Wang HW (2019) Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite. Mater Sci Eng A 742:573–583. https://doi.org/10.1016/j.msea.2018.11.032

    Article  CAS  Google Scholar 

  4. Abdel-Gawad SA, Osman WM, Fekry AM (2019) Characterization and corrosion behavior of anodized Aluminum alloys for military industries applications in artificial seawater. Surf Interfaces 14:314–323. https://doi.org/10.1016/j.surfin.2018.08.001

    Article  CAS  Google Scholar 

  5. Chen B, Li SF, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K (2015) An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater Des 72:1–8. https://doi.org/10.1016/j.matdes.2015.02.003

    Article  CAS  Google Scholar 

  6. Sharma A, Gupta G, Paul J (2021) A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing. Carbon Lett 31:339–370. https://doi.org/10.1007/s42823-020-00207-0

    Article  Google Scholar 

  7. Sadeghi B, Tan ZQ, Qi JS, Li ZQ, Min XR, Yue ZM, Fan GL (2021) Enhanced mechanical properties of CNT/Al composite through tailoring grain interior/grain boundary affected zones. Compos B Eng 223:109133. https://doi.org/10.1016/j.compositesb.2021.109133

    Article  CAS  Google Scholar 

  8. Zhang JJ, Liu JM, Lu YP, Li TJ (2020) Re-rolling technology and alloying-element distribution of carbon fibers reinforced al-matrix composite. J Mater Process Technol 281(1):116617. https://doi.org/10.1016/j.jmatprotec.2020.116617

    Article  CAS  Google Scholar 

  9. Raj RR, Yoganandh J, Saravanan MSS, Kumar SS (2021) Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Lett 31:125–136. https://doi.org/10.1007/s42823-020-00157-7

    Article  Google Scholar 

  10. Chen WP, Li ZX, Lu TW, He TB, Li RK, Li B, Wan BB, Fu ZQ, Scudino S (2019) Effect of ball milling on microstructure and mechanical properties of 6061Al matrix composites reinforced with high-entropy alloy particles. Mater Sci Eng A 762:138116. https://doi.org/10.1016/j.msea.2019.138116

    Article  CAS  Google Scholar 

  11. Ma F, Cao WJ, Luo YG, Qiu Y (2016) The review of manufacturing technology for aircraft structural part. Procedia CIRP 56:594–598. https://doi.org/10.1016/j.procir.2016.10.117

    Article  Google Scholar 

  12. Wu H, Wen SP, Huang H, Gao KY, Wu XL, Wang W, Nie ZR (2016) Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy. J Alloy Compd 685:869–880. https://doi.org/10.1016/j.jallcom.2016.06.254

    Article  CAS  Google Scholar 

  13. He HL, Yi YP, Cui JD, Huang SQ (2018) Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 160:293–302. https://doi.org/10.1016/j.vacuum.2018.11.048

    Article  CAS  Google Scholar 

  14. Lei C, Wang QD, Tang HP, Liu TW, Li ZY, Jiang HY, Wang K, Ebrahimi M, Ding WJ (2021) Hot deformation constitutive model and processing maps of homogenized Al–5Mg–3Zn–1Cu alloy. J Market Res 14:324–339. https://doi.org/10.1016/j.jmrt.2021.06.069

    Article  CAS  Google Scholar 

  15. Wang XH, Liu ZB, Luo HW (2017) Hot deformation characterization of ultrahigh strength stainless steel through processing maps generated using different instability criteria. Mater Charact 131:480–491. https://doi.org/10.1016/j.matchar.2017.07.041

    Article  CAS  Google Scholar 

  16. Yang JL, Wang GF, Jiao XY, Li Y, Liu Q (2018) High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy. Mater Charact 137:170–179. https://doi.org/10.1016/j.matchar.2018.01.019

    Article  CAS  Google Scholar 

  17. Zhou ZH, Fan QC, Xia ZH, Hao AG, Yang WH, Ji W, Cao HQ (2017) Constitutive relationship and hot processing maps of Mg-Gd-Y-Nb-Zr Alloy. J Mater Sci Technol 33:637–644. https://doi.org/10.1016/j.jmst.2015.10.019

    Article  CAS  Google Scholar 

  18. Sarkar A, Prasad MJNV, Murty SVSN (2020) Effect of initial grain size on hot deformation behavior of Cu-Cr-Zr-Ti alloy[J]. Mater Charact 160:110112. https://doi.org/10.1016/j.matchar.2019.110112

    Article  CAS  Google Scholar 

  19. Huang ZY, Zhang XX, Xiao BY, Ma ZY (2017) Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite. J Alloy Compd 722:145–157. https://doi.org/10.1016/j.jallcom.2017.06.065

    Article  CAS  Google Scholar 

  20. Wang KK, Li XP, Li QL, Shu GG, Tang GY (2017) Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature. Mater Sci Eng 696:248–256. https://doi.org/10.1016/j.msea.2017.03.013

    Article  CAS  Google Scholar 

  21. Zhong LW, Gao WL, Feng ZH, Lu Z, Mao GL (2018) Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al-Cu-Li X2A66 alloy. J Mater Res 33:912–922. https://doi.org/10.1557/jmr.2017.466

    Article  CAS  Google Scholar 

  22. Che B, Lu LW, Kang W, Luo J, Ma M, Liu LF (2021) Hot deformation behavior and processing map of a new type Mg-6Zn-1Gd-1Er alloy. J Alloy Compd 862(5):158700. https://doi.org/10.1016/j.jallcom.2021.158700

    Article  CAS  Google Scholar 

  23. Pang Y, Xiao Z, Jia YL, Zhang R, Yi J, Qiu WT, Li Z (2020) Hot deformation behavior of a CuAlMn shape memory alloy. J Alloy Compd 845:156161. https://doi.org/10.1016/j.jallcom.2020.156161

    Article  CAS  Google Scholar 

  24. Senthilkumar J, Suresh P, Kumar M, Balasubramanian M (2021) Effect of hot extrusion on mechanical and microstructural characteristics of stir cast AA6061/SiC/graphite hybrid composites. Mater Today 44:3638–3641. https://doi.org/10.1016/j.matpr.2020.10.104

    Article  CAS  Google Scholar 

  25. Kang SJ, Kim TH, Yang CW, Lee JI, Park ES, Noh TW, Kim M (2015) Atomic structure and growth mechanism of T1 precipitate in Al-Cu-Li-Mg-Ag alloy. Scripta Mater 109:68–71. https://doi.org/10.1016/j.scriptamat.2015.07.020

    Article  CAS  Google Scholar 

  26. Mokdad F, Chen DL, Liu ZY, Xiao BL, Ni DR, Ma ZY (2016) Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon 104:64–77. https://doi.org/10.1016/j.carbon.2016.03.038

    Article  CAS  Google Scholar 

  27. Gale WF, Totemeier TC (2004) Smithells Metals Reference Book, Eighth edition [M]. Elsevier Butterworth-Heinemann, Burlington

    Google Scholar 

  28. Lin YC, Dong WY, Zhou M, Wen DX, Chen DD (2018) A unified constitutive model based on dislocation density for an Al-Zn-Mg-Cu alloy at time-variant hot deformation conditions. Mater Sci Eng A 718:165–172. https://doi.org/10.1016/j.msea.2018.01.109

    Article  CAS  Google Scholar 

  29. Zhou HP, Zhang HB, Liu J, Qin SX, Lv YT (2018) Prediction of flow stresses for a typical nickel-based superalloy during hot deformation based on dynamic recrystallization kinetic equation. Rare Metal Mater Eng 47:3329–3337. https://doi.org/10.1016/S1875-5372(18)30240-6

    Article  CAS  Google Scholar 

  30. Zeng SW, Zhao AM, Jiang HT, Ren YS (2017) Flow behavior and processing maps of Ti-44.5Al-3.8Nb-1.0Mo-0.3Si-0.1B alloy. J Alloy Compd 698:786–793. https://doi.org/10.1016/j.jallcom.2016.12.214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supported by National Natural Science Foundation of China (Grant Nos. 51875453).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Jia or Zhiguo Xing.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Liu, Y., Xing, Z. et al. Hot deformation behavior of CNTs/Al-Li composite prepared by powder metallurgy. Carbon Lett. 32, 1345–1354 (2022). https://doi.org/10.1007/s42823-022-00356-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00356-4

Keywords

Navigation