Skip to main content
Log in

In situ synthesis NiO/F-MWCNTs nanocomposite for adsorption of malachite green dye from polluted water

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The presence of dyes in water is the most popular problem recently, so the current study was directed towards the synthesis of an effective material consisting of NiO and MWCNTs. The NiO/F-MWCNTs nanocomposite was synthesized using a simple hydrothermal method after functionalization of MWCNTs using sulfuric acid and nitric acid and utilized as an efficient surface to adsorption of malachite green dye from polluted water. The nanocomposite sample was characterized using several techniques are X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), High- resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) surface area analysis, Barrett-Joyner-Halenda (BJH) analysis and Energy dispersive X-ray (EDX). The analytical results showed that the prepared nanocomposite is of good crystalline nature with a particle size of 25.43 nm. A significant specific surface area was 412.08 m2/g which indicates the effective impact of the nanocomposite in the adsorption of malachite green (MG) dye. On the other hand, the effect of adsorbent dose, temperature, acidic function and contact time on the adsorption efficiency of dye was studied. The kinetics of dye adsorption were also investigated employing two kinetic models, pseudo-first-order model and pseudo-second-order model. Finally, the thermodynamic functions were determined to identify the type of the reaction and the spontaneity of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri ML, Comparelli R (2017) Nanocomposite materials for photocatalytic degradation of pollutants. Catal Today 281:85–100

    Article  CAS  Google Scholar 

  2. Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A (2016) Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 501(1–2):278–299

    Article  CAS  Google Scholar 

  3. Pandey P, Dahiya M (2016) Carbon nanotubes: types, methods of preparation and applications. Carbon 1:4

    Google Scholar 

  4. Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267

    Article  CAS  Google Scholar 

  5. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118

    Article  Google Scholar 

  6. Khoshhesab ZM, Sarfaraz M (2010) Preparation and characterization of NiO nanoparticles by chemical precipitation method. Synth React Inorg Met-Org Nano-Met Chem 40(9):700–703

    Article  CAS  Google Scholar 

  7. Yu W, Li B, Ding SJ (2016) Electroless fabrication and supercapacitor performance of CNT@ NiO-nanosheet composite nanotubes. Nanotechnology 27(7):075605

    Article  CAS  Google Scholar 

  8. Diva TN, Zare K, Taleshi F, Yousefi M (2017) Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. J Nanostruct Chem 7(3):273–281

    Article  CAS  Google Scholar 

  9. Abualnaja KM, Alprol AE, Ashour M, Mansour AT (2021) Influencing multi-walled carbon nanotubes for the removal of ismate violet 2R dye from wastewater: isotherm, kinetics, and thermodynamic studies. Appl Sci 11(11):4786

    Article  CAS  Google Scholar 

  10. Mishra AK, Arockiadoss T, Ramaprabhu S (2010) Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J 162(3):1026–1034

    Article  CAS  Google Scholar 

  11. Sui K, Li Y, Liu R, Zhang Y, Zhao X, Liang H, Xia Y (2012) Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydr Polym 90(1):399–406

    Article  CAS  Google Scholar 

  12. Farghali AA, Bahgat M, El Rouby WMA, Khedr MH (2012) Decoration of MWCNTs with CoFe2O4 nanoparticles for methylene blue dye adsorption. J Solut Chem 41(12):2209–2225

    Article  CAS  Google Scholar 

  13. Suwattanamala A, Bandis N, Tedsree K, Issro C (2017) Synthesis, characterization and adsorption properties of Fe3O4/MWCNT magnetic nanocomposites. Mater Today 4(5):6567–6575

    Google Scholar 

  14. Sahebian S, Zebarjad SM, Khaki JV, Lazzeri A (2016) The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method. Int Nano Lett 6(3):183–190

    Article  Google Scholar 

  15. Aljohani FS, Elsafi M, Ghoneim NI, Toderaş M, Sayyed MI, Mohafez H, El-Khatib M (2021) Water treatment from MB using Zn-Ag MWCNT synthesized by double arc discharge. Materials 14(23):7205

    Article  CAS  Google Scholar 

  16. Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RR, Rocha RP, Falaras P (2014) Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 69:311–326

    Article  CAS  Google Scholar 

  17. Altaa SH, Alshamsi HA, Al-Hayder LS (2018) Synthesis and characterization of rGO/Co3O4 composite as nanoadsorbent for rhodamine 6G dye removal. Desalin Water Treat 114:320–331

    Article  CAS  Google Scholar 

  18. Hussain N, Alwan S, Alshamsi H, Sahib IJ (2020) Green synthesis of S-and N-codoped carbon nanospheres and application as adsorbent of Pb (II) from aqueous solution. Int J Chem Eng. https://doi.org/10.1155/2020/9068358

    Article  Google Scholar 

  19. Her SC, Lai C (2013) Dynamic behavior of nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs). Materials 6(6):2274–2284

    Article  Google Scholar 

  20. López E, Kim J, Shanmugharaj AM, Ryu SH (2012) Multiwalled carbon nanotubes-supported Nickel catalysts for the steam reforming of propane. J Mater Sci 47(6):2985–2994

    Article  Google Scholar 

  21. Arunkumar T, Karthikeyan R, Ram Subramani R, Viswanathan K, Anish M (2020) Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). Int J Ambient Energy 41(4):452–456

    Article  CAS  Google Scholar 

  22. Yuan C, Xiong S, Zhang X, Shen L, Zhang F, Gao B, Su L (2009) Template-free synthesis of ordered mesoporous NiO/poly (sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Res 2(9):722–732

    Article  CAS  Google Scholar 

  23. Zaman A, Rashid TU, Khan MA, Rahman MM (2015) Preparation and characterization of multiwall carbon nanotube (MWCNT) reinforced chitosan nanocomposites: effect of gamma radiation. BioNanoScience 5(1):31–38

    Article  Google Scholar 

  24. Fayemi OE, Adekunle AS, Ebenso EE (2017) Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens Bio-Sens Res 13:17–27

    Article  Google Scholar 

  25. Lone IH, Aslam J, Akhter A (2021) Characterization of advanced green materials. Advanced green materials. Elsevier, Amsterdam, pp 31–41

    Chapter  Google Scholar 

  26. Shaikshavali P, Reddy TM, Gopal TV, Venkataprasad G, Kotakadi VS, Palakollu VN, Karpoormath R (2020) A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of Epinephrine in human serum and pharmaceutical formulation. Colloids Surf A 584:124038

    Article  CAS  Google Scholar 

  27. Li G, Li Y, Chen J, Zhao P, Li D, Dong Y, Zhang L (2017) Synthesis and research of egg shell-yolk NiO/C porous composites as lithium-ion battery anode material. Electrochim Acta 245:941–948

    Article  CAS  Google Scholar 

  28. Luo Y, Wang K, Luo S, Zhao F, Wu H, Jiang K, Wang J (2018) Three-dimensional carbon nanotube/transition-metal oxide sponges as composite electrodes with enhanced electrochemical performance. ACS Appl Nano Mater 1(6):2997–3005

    Article  CAS  Google Scholar 

  29. Gil A, Santamaría L, Korili SA (2018) Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid Interface Sci Commun 22:25–28

    Article  CAS  Google Scholar 

  30. Özcan A, Özcan AS (2005) Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite. J Hazard Mater 125(1–3):252–259

    Article  Google Scholar 

  31. Olgun A, Atar N (2009) Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste. J Hazard Mater 161(1):148–156

    Article  CAS  Google Scholar 

  32. Lima EC, Gomes AA, Tran HN (2020) Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°). J Mol Liq 311:113315

    Article  CAS  Google Scholar 

  33. Jiang C, Wang X, Qin D, Da W, Hou B, Hao C, Wu J (2019) Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J Hazard Mater 369:50–61

    Article  CAS  Google Scholar 

  34. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383

    Article  CAS  Google Scholar 

  35. Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DVN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176

    Article  CAS  Google Scholar 

  36. Ragadhita RISTI, Nandiyanto ABD, Nugraha WC, Mudzakir AHMAD (2019) Adsorption isotherm of mesopore-free submicron silica particles from rice husk. J Eng Sci Technol 14(4):2052–2062

    Google Scholar 

  37. Balarak D, Mostafapour FK, Azarpira H, Joghataei A (2017) Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. J Pharm Res Int. https://doi.org/10.9734/JPRI/2017/38056

    Article  Google Scholar 

  38. Alshameri A, He H, Zhu J, Xi Y, Zhu R, Ma L, Tao Q (2018) Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms. Appl Clay Sci 159:83–93

    Article  CAS  Google Scholar 

  39. Oloo CM, Onyari JM, Wanyonyi WC, Wabomba JN, Muinde VM (2020) Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environ Chem Ecotoxicol 2:64–72

    Article  Google Scholar 

  40. Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M (2009) Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng J 145(3):496–504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam Hussein Alwan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwan, S.H., Alshamsi, H.A. In situ synthesis NiO/F-MWCNTs nanocomposite for adsorption of malachite green dye from polluted water. Carbon Lett. 32, 1073–1084 (2022). https://doi.org/10.1007/s42823-022-00340-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00340-y

Keywords

Navigation