Skip to main content
Log in

On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: a systematic review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Rapid development of carbon nanotubes (CNTs) reinforced to polymer composites has been recently noticed in many aspects. In this work, the latest developments on fatigue and fracture enhancement of polymer composites with CNTs reinforcement with diverse methods are thoroughly compiled and systematically reviewed. The existing available researches clearly demonstrate that fatigue fracture resistance of polymer composites can be improved accordingly with the addition of CNTs. However, this work identifies an interesting research gap for the first time in this field. Based on the systematic reviewing approach, it is noticed that all previously performed experiments in this field were mostly focused upon studying one factor only at a time. In addition, it is also addressed that there were no previous studies reported a relationship or effect of one factor upon others during examining the fatigue fracture of carbon nanotubes. Moreover, there was no adequate discussion demonstrating the interaction of parameters or the influence of one parameter upon another when both were examined simultaneously. It is also realized that the scope of the conducted fatigue fracture studies of carbon nanotubes were mainly focused on microscale fatigue analysis but not the macroscale one, which can consider the effect of environment and service condition. In addition, the inadequacy of fatigue life predicting models via analytical and numerical methods for CNT-reinforced polymer composites have also been highlighted. Besides, barriers and challenges for future directions on the application of CNT-reinforced polymer composite materials are also discussed here in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Shirolkar N, Patwardhan P, Rahman A, Spear A, Kumar S (2021) Investigating the efficacy of machine learning tools in modeling the continuous stabilization and carbonization process and predicting carbon fiber properties. Carbon 174:605–616

    Article  CAS  Google Scholar 

  2. Luo H, Zhang D, He Z, Li X, Li Z (2021) Experimental investigation of the quasi-static and dynamic axial crushing behavior of carbon/glass epoxy hybrid composite tubes. Mater Today Commun 26:101941

    Article  CAS  Google Scholar 

  3. Ravikumar P, Suresh A, Rajeshkumar G (2020) An investigation into the tribological properties of bidirectional jute/carbon fiber reinforced polyester hybrid composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1764444

    Article  Google Scholar 

  4. Rafiee R, Ghorbanhosseini A (2018) Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. Int J Mech Mater Des 14:37–50

    Article  Google Scholar 

  5. Hamer S, Leibovich H, Green A, Avrahami R, Zussman E, Siegmann A et al (2014) Mode I and Mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates. Compos Sci Technol 90:48–56

    Article  CAS  Google Scholar 

  6. Czél G, Wisnom M (2013) Demonstration of pseudo-ductility in high performance glass-epoxy composites by hybridisation with thin-ply carbon prepreg. Compos Part A: Appl Sci Manuf 52:23

    Article  CAS  Google Scholar 

  7. Heller DA, Jena PV, Pasquali M, Kostarelos K, Delogu LG, Meidl RE et al (2020) Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat Nanotechnol 15:164–166

    Article  CAS  Google Scholar 

  8. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Decision making model for optimal reinforcement condition of natural fiber composites. Fibers Polym 16:153–163

    Article  CAS  Google Scholar 

  9. AL-Oqla FM, Sapuan M (2015) Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67:2450–2463

    Article  CAS  Google Scholar 

  10. AL-Oqla FM, Sapuan M, Anwer T, Jawaid M, Hoque M (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54

    Article  CAS  Google Scholar 

  11. AL-Oqla FM, Sapuan M, Ishak M, Nuraini A (2015) A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int J Polym Anal Charact 20:191–205

    Article  CAS  Google Scholar 

  12. AL-Oqla FM, Sapuan M (2020) Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier, Cambridge, USA

    Google Scholar 

  13. Fares O, AL-Oqla FM, Hayajneh MT (2019) Dielectric relaxation of mediterranean lignocellulosic fibers for sustainable functional biomaterials. MaterChem Phys 229:174

    CAS  Google Scholar 

  14. Alaaeddin M, Sapuan SM, Zuhri M, Zainudin E, AL-Oqla FM (2019) Lightweight and durable PVDF–SSPF composites for photovoltaics backsheet applications: thermal, optical and technical properties. Materials 12:2104

    Article  CAS  Google Scholar 

  15. Das P, Maity PP, Ganguly S, Ghosh S, Baral J, Bose M et al (2019) Biocompatible carbon dots derived from κ-carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior. Int J Biol Macromol 132:316–329

    Article  CAS  Google Scholar 

  16. Hayajneh MT, AL-Oqla FM, Mu’ayyad M (2021) Hybrid green organic/inorganic filler polypropylene composites: morphological study and mechanical performance investigations. E-Polymers 21:710–721

    Article  CAS  Google Scholar 

  17. Hayajneh M, AL-Oqla FM, Aldhirat A (2021) Physical and mechanical inherent characteristic investigations of various jordanian natural fiber species to reveal their potential for green biomaterials. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1944432

    Article  Google Scholar 

  18. Lee JM, Sing SL, Zhou M, Yeong WY (2018) 3D bioprinting processes: a perspective on classification and terminology. Int J Bioprint 4:151

    Article  CAS  Google Scholar 

  19. Abdollah MFB, Shuhimi FF, Ismail N, Amiruddin H, Umehara N (2015) Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater Des 67:577–582

    Article  Google Scholar 

  20. Akhshik M, Panthapulakkal S, Tjong J, Sain M (2017) Life cycle assessment and cost analysis of hybrid fiber-reinforced engine beauty cover in comparison with glass fiber-reinforced counterpart. Environ Impact Assess Rev 65:111–117

    Article  Google Scholar 

  21. Gao T, Zhang Z, Li Y, Song Y, Rong H, Zhang X (2021) Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties. J Mater Sci Technol 108:37

    Article  Google Scholar 

  22. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31

    Article  CAS  Google Scholar 

  23. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354

    Article  CAS  Google Scholar 

  24. Kurzyp M, Mills C, Rhodes R, Pozegic T, Smith CT, Beliatis M et al (2015) Filtration properties of hierarchical carbon nanostructures deposited on carbon fibre fabrics. J Phys D: Appl Phys 48:115305

    Article  CAS  Google Scholar 

  25. Fadeel B, Kostarelos K (2020) Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat Nanotechnol 15:164–164

    Article  CAS  Google Scholar 

  26. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  CAS  Google Scholar 

  27. Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotubes. Appl Phys Lett 73:3842–3845

    Article  CAS  Google Scholar 

  28. Laurie O, Cox DE, Wagner HD (1998) Buckling and collapese of embeded carbon nanotubes. Appl Phys Lett 81:1638–1641

    Article  Google Scholar 

  29. Sandler JKW, Shaffer MSP, Prasse T, Bauhofer W, Schulten K (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Article  CAS  Google Scholar 

  30. Gojny FH, Winchmann MHG, Fiedler B, Schulte K (2005) Influence of different on mechanical properties of epoxy matrix. Composites Sci Tech 65:2300–2313

    Article  CAS  Google Scholar 

  31. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng 53:73–197

    Article  CAS  Google Scholar 

  32. Grimmer CS (2008) The cyclic strength of carbon nanotube/glass fiber hybrid composites. PhD, University of California, Bekerley, USA

    Google Scholar 

  33. Liu A, Wang KW (2010) Damping characteristics of carbon nanotube-epoxy composites via multiscale analysis. In: Presented at the Structural Dynamics and Material Conference, Orlando, Florida

  34. Zhang X, Wang Y, Gu M, Wang M, Zhang Z, Pan W et al (2020) Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO 2 reduction. Nat Energy 5:684–692

    Article  CAS  Google Scholar 

  35. Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2008) Carbon nanotubes-reinforced epoxy-composites—enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Tech 64:1227–1249

    Google Scholar 

  36. Bal S, Samal S (2007) Carbon nanotube reinforced polymer composites—a state of the art. Bull Mater Sci 30:379–386

    Article  CAS  Google Scholar 

  37. Khan SU, Kim J-K (2011) Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. Int J Aeronaut Space Sci 12:115–133

    Article  Google Scholar 

  38. Courtney TH (2005) Mechanical behavior of materials. Waveland Press, Inc, Long Grove

    Google Scholar 

  39. Kinloch A, Maxwell D, Young R (1985) The fracture of hybrid-particulate composites. J Mater Sci 20:4169–4184

    Article  CAS  Google Scholar 

  40. Wang M, Yang J, You X, Liao C, Yan J, Ruan J et al (2021) Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties. J Mater Sci Technol 71:23–30

    Article  CAS  Google Scholar 

  41. Khan FSA, Mubarak N, Khalid M, Khan MM, Tan YH, Walvekar R et al (2021) Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Crit Revn Solid State Mater Sci. https://doi.org/10.1080/10408436.2021.1935713

    Article  Google Scholar 

  42. Callister WD, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach. Waveland Press, Inc, Long Grove

    Google Scholar 

  43. Pauchard V, Chateauminois A, Grosjean F, Odru P, Fiedler B (2002) In situ analysis of delayed fibre failure within water-aged GFRP under static fatigue conditions. Int J Fatigue 24:447–454

    Article  CAS  Google Scholar 

  44. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190

    Article  CAS  Google Scholar 

  45. Zhang W, Picu RC, Koratkar N (2008) The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nano composites. Nanotechnology 19:5

    Article  Google Scholar 

  46. Mirjalili V (2010) Aspects of the fracture toughness of carbon nanotube modified epoxy polymer composites. PhD, Department of Mechanical Engineering, McGill University, Montreal

    Google Scholar 

  47. Thostenson ET, Chou T-W (2006) Processing structure multifunctional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    Article  CAS  Google Scholar 

  48. Zhang W, Picu RC, Koratkar N (2007) Suppression of fatigue crack growth in carbon nanotube composites. Appl Phys Lett 91:3

    Google Scholar 

  49. Yu N, Zhang ZH, He SY (2008) Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater Sci Eng 494:380–384

    Article  CAS  Google Scholar 

  50. Bortz DR, Merino C, Martion-Gullon I (2011) Carbon nanofiber enhances the fracture toughness and fatigue performance of a structural epoxy system. Composites Sci Tech 71:31–38

    Article  CAS  Google Scholar 

  51. Zhang W (2008) Advanced multifunctional composites featuring carbon nanotube additives. PhD, Mechanical Engineering, Rensselaer Polytechnic Institute, Troy New York

    Google Scholar 

  52. Davis DC, Whelan BD (2011) An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Compos: Part B 42:105–116

    CAS  Google Scholar 

  53. Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L et al (2010) Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos: Sci Tech 70:1346–1352

    CAS  Google Scholar 

  54. Sager RJ, Klein PJ, Davis DC, Lagoudas DC, Warren GL, Sue H-J (2011) Interlaminar fracture toughness of woven fabric composite laminates with carbon nanotube/epoxy interleaf films. J Appl Polym Sci 121:2394–2405

    Article  CAS  Google Scholar 

  55. Grimmer CS, Dharan CKH (2009) High Cycle Fatigue Life Extension of Glass Fiber/ Polymer Composite with Carbon Nanotubes. J Wuhan Univ Technol-Mater Sci Ed 24:167–173

    Article  CAS  Google Scholar 

  56. Kuronuma Y, Shindo Y, Takeda T, Narita F (2011) Crack growth characteristics of carbon nanotube-based polymer composites subjected to cyclic loading. Eng Fract Mech 78:3102–3110

    Article  Google Scholar 

  57. Jen Y-M, Wang Y-C (2012) Stress concentration effect on the fatigue properties of carbon nanotube/epoxy composites. Compos: Part B 43:1687–1694

    CAS  Google Scholar 

  58. Grimmer CS, Dharan CKH (2010) Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites. Compos: Sci Tech 70:901–908

    CAS  Google Scholar 

  59. Menna C, Bakis CE, Prota A (2016) Effect of nanofiller length and orientation distributions on mode I fracture toughness of unidirectional fiber composites. J Compos Mater 50:1331–1352

    Article  CAS  Google Scholar 

  60. Shen GA, Namilae S, Chandra N (2006) Load transfer issues in the tensile and compressive behavior of multiwall carbon nanotubes. Mater Sci Eng 429:66–73

    Article  CAS  Google Scholar 

  61. De B, Banerjee S, Verma KD, Pal T, Manna P, Kar KK (2020) Carbon nanotube as electrode materials for supercapacitors. Handbook of nanocomposite supercapacitor materials II. Springer, Berlin, pp 229–243

    Chapter  Google Scholar 

  62. Xiao KQ, Zhang LC (2004) The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J Mater Sci 39:4481–4486

    Article  CAS  Google Scholar 

  63. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos: Part A 34:689–694

    Article  CAS  Google Scholar 

  64. Xiao S, Hou W (2006) Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions. Fuller Nanotub Carbon Nanostruct 14:9–16

    Article  CAS  Google Scholar 

  65. Loos MR, Yang J, Feke DL, Manas-Zloczower I, Unal S, Younes U (2013). Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Composites Part B: Engineering, 44(1):740–744

  66. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46

    Article  CAS  Google Scholar 

  67. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization and composite properties. Polymer 4:275–295

    Article  CAS  Google Scholar 

  68. Ma P-C, Siddiqui NA, Marom G, Kim J-Y (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos: Part A 41:1345–1367

    Article  CAS  Google Scholar 

  69. Schmid CF, Klingenberg DJ (2000) Mechanical flocculation in flowing fiber suspensions. Phys Rev Lett 84:290–293

    Article  CAS  Google Scholar 

  70. Lee JW (2009) A scattered data approximation tool to map carbon nanotube dispersion to the processing parameters in polymer nanocomposites. Master, Rice University, Houstan, Texas

    Google Scholar 

  71. Li Y, Shimizu H (2007) High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48:2203–2207

    Article  CAS  Google Scholar 

  72. Villmow T, Kretzschmar B, Pötschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twinscrew extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol 70:2045

    Article  CAS  Google Scholar 

  73. Gkikas G, Barkoula N-M, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos B 43:2679–2705

    Article  CAS  Google Scholar 

  74. Canebal GT, Dutta C, Agrawal V, Rao M (2010) Novel ultrasonic dispersion of carbon nanotubes. J Miner Mater Charact Eng 9:165–181

    Google Scholar 

  75. Frømyr TR, Hansen FK, Olsen T (2012) The optimum dispersion of carbon nanotubes for epoxy nanocomposites: evolution of the particle size distribution by ultrasonic treatment. J Nanotechnol 2012:1–14

    Article  CAS  Google Scholar 

  76. Hwang SH, Park YB, Yoon KH, Bang DS (2011) Smart materials and structures based on carbon nanotube composites. In: Carbon nanotubes - synthesis, characterization, applications, vol 514. pp 371–396

  77. Ma P-C, Kim J-K (2011) Carbon nanotube for polymer reinforcement. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  78. Yi J-W, J.-H. Jang J-H, Lee W, Um MK, Byun J-H, Lee H-G et al (2009) Mechanical and electrical properties of micro/nanocomposites via cnt dispersed resin film infusion process. In: Proceedings of the 17th International Conference on Composite Materials, Edinburgh, Scotland

  79. Kim M, Park Y-B, Okoli OI, Zhang C (2010) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69:335–342

    Article  CAS  Google Scholar 

  80. Ramana GV, Padya B, Kumar RN, Prabhakar KVP, Jain PK (2010) Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites. Indian J Eng Mater Sci 17:331–337

    CAS  Google Scholar 

  81. Chang L, Friedrich K, Ye L, Toro P (2009) Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. J Mater Sci 44:4003–4012

    Article  CAS  Google Scholar 

  82. Thostenson ET, Ziaee S, Chou T-W (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos Sci Technol 69:801–804

    Article  CAS  Google Scholar 

  83. Wise KE, Park C, Siochi EJ, Harrison JS, Fiedler B (2004) Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions. Chem Phys Lett 391:207–211

    Article  CAS  Google Scholar 

  84. Garcia EJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos: Part A 39:1065–1070

    Article  CAS  Google Scholar 

  85. Blanco J, Garcia EJ, De Villoria RG, Wardle BL (2009) Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes. J Compos Mater 43:825–841

    Article  CAS  Google Scholar 

  86. Zeng Y, Ci L, Carey BJ, Vajtai R, Ajayan PM (2010) Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites. Acsnano 4:6798–6804

    CAS  Google Scholar 

  87. Chou T-W, Thostenson ET, Gao LM (2010) Advances in the science and technology of carbon nanotube composites. In: Proceedings of the 17th International Conference on Composite Materials, Edinburgh, Scotland

  88. Qian D, Liu WK, Ruoff RS (2003) Load transfer mechanism in carbon nanotube ropes. Compos Sci Eng 63:1561–1569

    CAS  Google Scholar 

  89. Bortz DR, Merino C, Martin-Gullon I (2011) Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Compos Sci Technol 71:31–38

    Article  CAS  Google Scholar 

  90. Rotem A (1993) Load frequency effect on the fatigue strength of isotropic laminates. Compos Sci Technol 46:129–138

    Article  CAS  Google Scholar 

  91. Yang Q, Chen Y, Duan X, Zhou S, Niu Y, Sun H et al (2020) Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Appl Catal B: Environ 276:119146

    Article  CAS  Google Scholar 

  92. Camponeschi EL (2007) Dispersion and alignment of carbon nanotubes in polymer based composites. PhD, School of Material Science and Engineering, Georgia Institute of Technology, Atlanta

    Google Scholar 

  93. Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube composites. Compos Sci Tech 64:2425–2437

    Article  CAS  Google Scholar 

  94. Rajoria H, Jalili N (2005) Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Composites Sci and Tech 65:2079–2093

    Article  CAS  Google Scholar 

  95. Bal S, Samal SS, Mohanty UK (2011) Mechanical and microstructural analysis of carbon nanotube composites pretreated at different temperatures. Am J Mater Sci 1:5–11

    Google Scholar 

  96. Suhr J, Zhang W, Ajayan PM, Koratkar NA (2006) Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Lett 6:219–223

    Article  CAS  Google Scholar 

  97. Barkoula NM, Paipetis A, Matikas T, Vavouliotis A, Karapappas P, Kostopoulos V (2009) Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity. Mech Compos Mater 45:21–32

    Article  CAS  Google Scholar 

  98. Allaoui A, Evesque P, Bai JB (2008) Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix. J Mater Sci 43:5020–5022

    Article  CAS  Google Scholar 

  99. AbdAllah MH, Abidin EM, Selmy AI, Khashaba UA (1997) Effect of mean stress on fatigue behaviour of GFRP pultruded rod composites. Compos: Part A 28:87–91

    Article  Google Scholar 

  100. Barron V, Buggy M, McKenna NH (2001) Frequency effects on the fatigue behaviour on carbon fibre reinforced polymer laminates. J Mater Sci-Mater Med 36:1755–1761

    Article  CAS  Google Scholar 

  101. Tang HC, Nguyen T, Chuang T-J, Chin J, Lesko J, Wu F (2000) Fatigue model for fiber reinforced polymeric composites. J Mater Civ Eng 12:97–104

    Article  Google Scholar 

  102. Dittenber DB (2010) Fatigue of polymer composites: life prediction and environmental effect. Master, West Virginia University, West Verginia

    Google Scholar 

  103. Tang HC, Nguyen T, Chuang T-J, Chin J, Lesko J, Wu F (2000) Temperature effects on fatigue of polymer composites. Composites engineering. University of New Orleans, New Orleans, pp 861–862

    Google Scholar 

  104. Weitsman Y (ed) (1991) Moisture in composites: sorption and damage (fatigue of composites. Elsevier Science, Amsterdam

    Google Scholar 

  105. Patel SR (1999) Durability of advanced woven polymer matrix composites for aerospace application. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  106. Atiq Ur Rehman M, Chen Q, Braem A, Shaffer MS, Boccaccini AR (2021) Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. Int Mater Rev 66:533–562

    Article  CAS  Google Scholar 

  107. Aridi N, Sapuan SM, Zainudin E, AL-Oqla FM (2016) Mechanical and morphological properties of injection molded rice husk-polypropylene composites. Int J Polym Anal Charact 4:305

    Article  CAS  Google Scholar 

  108. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Selecting natural fibers for bio-based materials with conflicting criteria. Am J Appl Sci 12:64–71

    Article  CAS  Google Scholar 

  109. Boger L, Sumfleth J, Hedemann H, Schulte K (2010) Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos: Part A 41:1419–1424

    Article  CAS  Google Scholar 

  110. White KL, Sue H-J (2012) Delamination toughness of fiber-reinforced composites containing a carbon nanotube/polyamide-12 epoxy thin film interlayer. Polymer 53:37–42

    Article  CAS  Google Scholar 

  111. AL-Oqla FM, Alothman OY, Jawaid M, Sapuan SM, Es-Saheb M (2014) Processing and properties of date palm fibers and its composites. Biomass and bioenergy. Springer, Cham, Switzerland, pp 1–25

    Google Scholar 

  112. AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2016) A decision-making model for selecting the most appropriate natural fiber–Polypropylene-based composites for automotive applications. JCompos Mater 50:543–556

    Article  Google Scholar 

  113. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2014) A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. Bio Resour 10:299–312

    Google Scholar 

  114. AL-Oqla FM, Sapuan SM, Ishak MR, Aziz NA (2014) Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. Bio Resour 9:4608–4621

    Google Scholar 

  115. AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2015) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electr Agric 113:116–127

    Article  Google Scholar 

  116. Ren Y, Li F, Cheng HM, Liao K (2003) Tension-tension fatigue behaviour of unidirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 41:2159–2179

    Article  CAS  Google Scholar 

  117. Kruger R (2006) Fracture mechanics for composites—state of the art and challenges. L. R Center, NASA, Wahingon, p 15

    Google Scholar 

  118. Golestanian H, Shojaie M (2010) Numerical characterization of cnt-based polymer composites considering interface effects. Comput Mater Sci 50:731–736

    Article  CAS  Google Scholar 

  119. Masud MAA, Masud AKM (2010) Effect of interphase characteristic and property on axial modulus of carbon nanotube based composites. J Mech Eng 41:15–24

    Article  Google Scholar 

  120. Kuronuma Y, Shindo Y, Takeda T, Narita F (2010) Fracture behaviour of cracked carbon nanotube-based polymer composites: experiments and finite element simulations. Fatigue Fract Eng Mater Struct 33:87–93

    Article  CAS  Google Scholar 

  121. Liu Q, Zhang H, Xie J, Liu X, Lu X (2020) Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy 2:521–539

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris M. AL-Oqla.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A.H.M., AL-Oqla, F.M., Risby, M.S. et al. On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: a systematic review. Carbon Lett. 32, 727–740 (2022). https://doi.org/10.1007/s42823-022-00323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00323-z

Keywords

Navigation