Skip to main content

Advertisement

Log in

Facile synthesis and characteristics of NiMoS2/rGO nanocomposites for energy and environmental application

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

NiMoS2 is a promising material for various functional applications and highly compatible with GO to make hybrid nanocomposites with excellent characteristics for supercapacitor electrode material. Deposition of NiMoS2 was achieved on the rGO(reduced Graphene Oxide) surface to form a NiMoS2−rGO nanocomposite by the method of the facile hydrothermal synthesis process. XRD pattern shows the crystalline nature of composites. Raman and EPMA result interpreting the composites formation and elements compositions, respectively. The sheet-like morphology of rGO was found in the composites by FESEM images. Particles distribution was confirmed by HR-TEM. The electrochemical properties of the pure NiMoS2 and NiMoS2–rGO composites have been studied by cyclic voltammetry analysis. The results revealed that the NiMoS2/5% rGO nanocomposites exhibit high specific capacitance compared to pure NiMoS2 due to the synergistic effects of NiMoS2 and rGO in the composite material. The photocatalytic behavior of the prepared nanocomposites for dye degradation was tested. The quantity of rGO has significantly improved the photocatalytic behavior of NiMoS2/rGO composites. The studies on degradation mechanism, the N2 adsorption/desorption isotherms, pore size distribution behavior and % of removal of MB reveal the enhanced photocatalytic performance of sysnthesised composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science. https://doi.org/10.1126/science.1158736

    Article  Google Scholar 

  2. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.12.249

    Article  Google Scholar 

  3. Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater. https://doi.org/10.1002/adma.201104502

    Article  Google Scholar 

  4. García P, Torreglosa JP, Fernández LM, Jurado F (2013) Control strategies for high-power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2013.02.028

    Article  Google Scholar 

  5. Song Z, Hou J, Hofmann H, Li J, Ouyang M (2017) Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles. Energy. https://doi.org/10.1016/j.energy.2017.01.098

    Article  Google Scholar 

  6. Maiaugree W, Tangtrakarn A, Lowpa S, Ratchapolthavisin N, Amornkitbamrung V (2015) Facile synthesis of bilayer carbon/Ni3S2 nanowalls for a counter electrode of dye-sensitized solar cell. Electrochim Acta. https://doi.org/10.1016/j.electacta.2015.06.051

    Article  Google Scholar 

  7. Jiaqin Y, Duan X, Guo W, Li Di, Zhang H, Zheng W (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy. https://doi.org/10.1016/j.nanoen.2014.02.006

    Article  Google Scholar 

  8. Zhang Z, Zhao C, Min S, Qian X (2014) A facile one-step route to RGO/Ni3S2 for high-performance supercapacitors. Electrochim Acta. https://doi.org/10.1016/j.electacta.2014.08.038

    Article  Google Scholar 

  9. Yang W, Ni M, Ren X, Tian Y, Li N, Yuefeng Su, Zhang X (2015) Graphene in supercapacitor applications. Curr Opin Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2015.10.009

    Article  Google Scholar 

  10. Sun Y, Zhang W, Li D, Gao L, Hou C, Zhang Y, Liu Y (2015) Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2015.07.212

    Article  Google Scholar 

  11. Nandi D, Mohan VB, Bhowmick AK, Bhattacharyya D (2020) Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. J Mater Sci. https://doi.org/10.1007/s10853-020-04475-z

    Article  Google Scholar 

  12. Chou S-W, Lin J-Y (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc. https://doi.org/10.1149/2.078304jes

    Article  Google Scholar 

  13. Yong H, Li X, Wang C (2016) Nitrogen-doped graphene/sulfur composite as cathode material for room-temperature sodium-sulfur battery application. Electrochem Soc. https://doi.org/10.1149/MA2016-01/5/480

    Article  Google Scholar 

  14. Yang T, Ruiyi Li, Xiaohuan L, Li Zaijun Gu, Zhiguo WG, Junkang L (2016) Nitrogen and sulphur-functionalized multiple graphene aerogel for supercapacitors with excellent electrochemical performance. Electrochim Acta. https://doi.org/10.1016/j.electacta.2015.11.043

    Article  Google Scholar 

  15. Jiaqin Y, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A. https://doi.org/10.1039/C3TA11167A

    Article  Google Scholar 

  16. Wei Z, Zheng J-L, Yue Y-H, Guo L (2015) Highly stable rGO-wrapped Ni3S2 nanobowls: Structure fabrication and superior long-life electrochemical performance in LIBs. Nano Energy. https://doi.org/10.1016/j.nanoen.2014.11.022

    Article  Google Scholar 

  17. Jayachandiran J, Yesuraj J, Arivanandhan M, Raja A, Austin Suthanthiraraj S, Jayavel R, Nedumaran D (2018) Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-018-0873-0

    Article  Google Scholar 

  18. Liu Y, Zhao D, Liu H, Umar A, Xiang Wu (2018) High performance hybrid supercapacitor based on hierarchical MoS2/Ni3S2 metal chalcogenide. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2018.12.024

    Article  Google Scholar 

  19. Manikandan R, Justin Raj C, Nagaraju G, Velayutham R, Moulton SE, Puigdollers J, Kim BC (2021) Selenium enriched hybrid metal chalcogenides with enhanced redox kinetics for high-energy density supercapacitors. Chem Eng J. https://doi.org/10.1016/j.cej.2021.128924

    Article  Google Scholar 

  20. Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev. https://doi.org/10.1039/C4CS00350K

    Article  Google Scholar 

  21. Rao CNR, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces. https://doi.org/10.1021/am509096x

    Article  Google Scholar 

  22. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in microscale devices: recent advances in design and fabrication of microsupercapacitors. Energy Environ Sci. https://doi.org/10.1039/C3EE43526A

    Article  Google Scholar 

  23. Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R, Ajayan PM (2013) Direct laserpatterned micro-supercapacitors from paintable MoS2 films. Small. https://doi.org/10.1002/smll.201203164

    Article  Google Scholar 

  24. Huang P, Lethien C, Pinaud S, Brousse K, Laloo R, Turq V, Respaud M, Demortiere A, Daffos B, Taberna PL, Chaudret B, Gogotsi Y, Simon P (2016) On-chip and freestanding elastic carbon films for micro-supercapacitors. Science. https://doi.org/10.1126/science.aad3345

    Article  Google Scholar 

  25. Yun J, Song C, Lee H, Park H, Jeong YR, Kim JW, Jin SW, Oh SY, Sun L, Zi G, Ha JS (2018) Stretchable array of highperformance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy. https://doi.org/10.1016/j.nanoen.2018.05.017

    Article  Google Scholar 

  26. Huang Y, Yan C, Shi X, Zhi W, Li Z, Yan Y, Zhang M, Cao G (2018) Ni0.85 Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy. https://doi.org/10.1016/j.nanoen.2018.03.082

    Article  Google Scholar 

  27. Luo S, Shen Y, Yu S, Wan Y, Liao W, Sun R, Wong C (2017) Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ Sci. https://doi.org/10.1039/C6EE03190K

    Article  Google Scholar 

  28. Wang C, Guan Z, Shen Y, Yu S, Fu X-Z, Sun R, Wong C-P (2018) Shape-controlled synthesis of CoMoO4@Co15Ni15S4 hybrids with rambutan-like structure for high-performance all-solid-state supercapacitors. Chem Eng J. https://doi.org/10.1016/j.cej.2018.03.160

    Article  Google Scholar 

  29. Li Z, Huang T, Gao W, Xu Z, Chang D, Zhang C, Gao C (2017) Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano. https://doi.org/10.1021/acsnano.7b05092

    Article  Google Scholar 

  30. Jiang Q, Kurra N, Xia C, Alshareef HN (2017) Hybrid Microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy. Adv Energy Mater. https://doi.org/10.1002/aenm.201601257

    Article  Google Scholar 

  31. Wu Z-S, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Muellen K (2014) Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv Mater. https://doi.org/10.1002/adma.201401228

    Article  Google Scholar 

  32. Wu J, Shi X, Song W, Ren H, Tan C, Tang S, Meng X (2018) Hierarchically porous hexagonal microsheets constructed by wellinterwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via twostep anion-exchange for high-performance asymmetric supercapacitors. Nano Energy. https://doi.org/10.1016/j.nanoen.2018.01.024

    Article  Google Scholar 

  33. Ohtani B (2010) Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J Photochem Photobiol C. https://doi.org/10.1016/j.jphotochemrev.2011.02.001

    Article  Google Scholar 

  34. Junyu Z, Gen L, Hong GL, Shi GS (2020) Tracking the atomic pathways of Pt3Ni-Ni(OH)2 core-shell structures at the gas-liquid interface by in-situ liquid cell TEM. Sci China Chem. https://doi.org/10.1007/s11426-019-9663-8

    Article  Google Scholar 

  35. Jing L, Gary H, Junqing Y, Shengzhong FL (2021) Metal-doped Mo2C (metal = Fe Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution. Chin J Catal. https://doi.org/10.1016/S1872-2067(20)63589-6

    Article  Google Scholar 

  36. Mengmeng Z, Kai Z, Jinyan X, Yi W, Chao H, Weijie L, Gang C (2020) 1D/2D WO3 nanostructure coupled with nanoparticulate CuO cocatalyst for enhancing solardriven CO2 photoreduction: The impact of the crystal facet. Sustain Energy Fuel. https://doi.org/10.1039/D0SE00034E

    Article  Google Scholar 

  37. Rongchen S, Kelin H, Aiping Z, Neng L, Yun HN, Peng Z, Jun H, Xin L (2021) In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2021.120104

    Article  Google Scholar 

  38. Miao MF, Jun XS, Xiang-G H, Jin YW, Wei C (2020) Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.01.054

    Article  Google Scholar 

  39. Zizhan L, Rongchen S, Yun HN, Peng Z, Quanjun X, Xin L (2020) A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.04.032

    Article  Google Scholar 

  40. Cai W, Lai T, Lai J, Xie H, Ouyang L, Ye J, Chengzhong Yu (2016) Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density. Sci Rep. https://doi.org/10.1038/srep26890

    Article  Google Scholar 

  41. Liu W, Niu H, Yang J, Cheng K, Ye Ke, Zhu K, Wang G, Cao D, Yan J (2018) Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem Mater. https://doi.org/10.1021/acs.chemmater.7b04976

    Article  Google Scholar 

  42. Huang K-J, Zhang J-Z, Shi G-W, Liu Y-M (2014) Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim Acta. https://doi.org/10.1016/j.electacta.2014.04.007

    Article  Google Scholar 

  43. Wu Z, Li B, Xue Y, Li J, Zhang Y, Gao F (2015) Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. J Mater Chem A. https://doi.org/10.1039/C5TA04549E

    Article  Google Scholar 

  44. Ji H, Liu C, Wang T, Chen J, Mao Z, Zhao J, Hou W, Yang G (2015) Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small. https://doi.org/10.1002/smll.201502355

    Article  Google Scholar 

  45. Javed MS, Dai S, Wang M, Guo D, Chen L, Wang X, Hu C, Xi Y (2015) High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J Power Sources. https://doi.org/10.1016/j.jpowsour.2015.03.079

    Article  Google Scholar 

  46. Shang M, Du C, Huang H, Mao J, Liu P, Song W (2018) Direct electrochemical growth of amorphous molybdenum sulfide nanosheets on Ni foam for high-performance supercapacitors. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2018.07.127

    Article  Google Scholar 

  47. Ilanchezhiyan P, Mohan Kumar G, Kang TW (2015) Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2015.02.082

    Article  Google Scholar 

  48. Zhang Y, Sun W, Rui X, Li B, Tan HT, Guo G, Madhavi S, Zong Y, Yan Q (2015) One-pot synthesis of tunable crystalline Ni3S4 @Amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small. https://doi.org/10.1002/smll.201403772

    Article  Google Scholar 

  49. Wang X, Ding J, Yao S, Wu X, Feng Q, Wang Z, Geng B (2014) High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J Mater Chem A. https://doi.org/10.1039/C4TA03044C

    Article  Google Scholar 

  50. Wang H, Yuan H, Sae Hong S, Li Y, Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev. https://doi.org/10.1039/C4CS00287C

    Article  Google Scholar 

  51. Xiao K, Li JW, Chen G-F, Liu Z-Q, Li N, Su Y-Z (2014) Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochim Acta. https://doi.org/10.1039/D1QM00128K

    Article  Google Scholar 

  52. Jiang Z, Lu W, Li Z, Ho KH, Li X, Jiao X, Chen D (2014) Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J Mater Chem A. https://doi.org/10.1039/C3TA14430E

    Article  Google Scholar 

  53. Hummers Jr, WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 1339–1339. https://doi.org/10.1021/ja01539a017

  54. Satheesh K, Jayavel R (2013) Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater Lett. https://doi.org/10.1016/j.matlet.2013.09.044

    Article  Google Scholar 

  55. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater. https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  56. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide. Nature. https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pazhanivel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeshkumar, A., Pazhanivel, K., Ramadoss, N. et al. Facile synthesis and characteristics of NiMoS2/rGO nanocomposites for energy and environmental application. Carbon Lett. 32, 753–765 (2022). https://doi.org/10.1007/s42823-021-00305-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00305-7

Keywords

Navigation