Skip to main content
Log in

Preparation and capacitive property of graphene oxide composite supercapacitor electrodes functionalized by Fe-based metal–organic frameworks

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We have prepared MIL-101/graphene oxide (GO) composites with various mixing molar ratio of Fe-containing metal–organic frameworks (MOFs) against GO. When synthesizing MOFs, it was possible to synthesize uniform crystal powders using hydrothermal method. MIL-101 consists of a terephthalic acid (TPA) ligand, with the central metal composed of Fe, which was the working electrode material for supercapacitors. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis had been done to ascertain microstructures and morphologies of the composites. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge measurements were performed to analyze the electrochemical properties of the composite electrodes in 6 M KOH electrolyte. By controlling the metal ligand mole ratio against GO, we prepared a changed MOF structure and a different composite morphology, which could be studied as one of the promising optimized electrode materials for supercapacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. Nanosci Technol Collect Rev Nat J:320–329

  3. Hong J-H, Jung Y, Kim S (2019) Preparation of reduced graphene oxide electrodes treated by electron beam irradiation and their electrochemical behaviors. Res Chem Intermed 45(5):2715–2726

    Article  CAS  Google Scholar 

  4. Wang T, Chen HC, Yu F, Zhao X, Wang H (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater 16:545–573

    Article  Google Scholar 

  5. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9(1):102–106

    Article  CAS  Google Scholar 

  6. Zhang L, Hui KN, San Hui K, Lee H (2016) High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. J Power Sources 318:76–85

    Article  CAS  Google Scholar 

  7. Kim J, Jung Y, Kim S (2019) Microwave-assisted one-pot synthesis of iron (II, III) oxide/reduced graphene oxide for an application of supercapacitor electrode. Carbon Lett 29(4):411–418

    Article  Google Scholar 

  8. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  9. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234

    Article  CAS  Google Scholar 

  10. Kang C-S, Ko Y-I, Fujisawa K, Yokokawa T, Kim JH, Han JH, Hayashi T (2020) Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Lett 30(5):527–534

    Article  Google Scholar 

  11. Czaja AU, Trukhan N, Müller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38(5):1284–1293

    Article  CAS  Google Scholar 

  12. Siu PW, Brown ZJ, Farha OK, Hupp JT, Scheidt KA (2013) A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67. Chem Commun 49(93):10920–10922

    Article  CAS  Google Scholar 

  13. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866

    Article  CAS  Google Scholar 

  14. Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Pang H (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7(18):1602733

    Article  Google Scholar 

  15. Liu Q, Xie Y, Deng C, Li Y (2017) One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides. Talanta 175:477–482

    Article  CAS  Google Scholar 

  16. Sheberla D, Bachman JC, Elias JS, Sun C-J, Shao-Horn Y, Dincă M (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    Article  CAS  Google Scholar 

  17. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12(1):1–17

    Article  Google Scholar 

  18. Cui F, Deng Q, Sun L (2015) Prussian blue modified metal–organic framework MIL-101 (Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv 5(119):98215–98221

    Article  CAS  Google Scholar 

  19. Gecgel C, Simsek UB, Gozmen B, Turabik M (2019) Comparison of MIL-101 (Fe) and amine-functionalized MIL-101 (Fe) as photocatalysts for the removal of imidacloprid in aqueous solution. J Iran Chem Soc 16(8):1735–1748

    Article  CAS  Google Scholar 

  20. Punetha VD, Rana S, Yoo HJ, Chaurasia A, McLeskey JT Jr, Ramasamy MS, Cho JW (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci 67:1–47

    Article  CAS  Google Scholar 

  21. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672

    Article  CAS  Google Scholar 

  22. Kim Y, Kim S (2015) Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites. Electrochim Acta 163:252–259

    Article  CAS  Google Scholar 

  23. Hong JY, Jung Y, Park D-W, Chung S, Kim S (2018) Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells. Electrochim Acta 259:1021–1029

    Article  CAS  Google Scholar 

  24. Hong J, Park S-J, Kim S (2019) Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim Acta 311:62–71

    Article  CAS  Google Scholar 

  25. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  26. Oh M, Park S-J, Jung Y, Kim S (2012) Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met 162(7–8):695–701

    Article  CAS  Google Scholar 

  27. Park J-S, Jung Y, Kim S (2018) In situ synthesis of graphene nanosheet/MoS2 composite electrodes and their electrochemical performance for lithium secondary cells. J Nanosci Nanotechnol 18(1):44–47

    Article  CAS  Google Scholar 

  28. Lee SM, Lee SC, Hong WG, Kim HJ (2012) N2 and H2 adsorption behavior of KOH-activated ordered mesoporous carbon. Chem Phys Lett 554:133–136

    Article  CAS  Google Scholar 

  29. Li X, Chen S, Fan X, Quan X, Tan F, Zhang Y, Gao J (2015) Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon. J Colloid Interface Sci 447:120–127

    Article  CAS  Google Scholar 

  30. Liu Z, Fu D, Liu F, Han G, Liu C, Chang Y, Li S (2014) Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon 70:295–307

    Article  CAS  Google Scholar 

  31. Ling X, Du F, Zhang Y, Shen Y, Li T, Alsaedi A, Zou Z (2019) Preparation of an Fe 2 Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction. RSC Adv 9(57):33558–33562

    Article  CAS  Google Scholar 

  32. Wu Y, Luo H, Wang H (2014) Synthesis of iron (III)-based metal–organic framework/graphene oxide composites with increased photocatalytic performance for dye degradation. RSC Adv 4(76):40435–40438

    Article  CAS  Google Scholar 

  33. Keshavarz F, Kadek M, Barbiellini B, Bansil A (2021) Electrochemical potential of the metal organic framework MIL-101(Fe) as cathode material in Li–Ion batteries. Condens Matter 6(2):22

    Article  CAS  Google Scholar 

  34. Kumar R, Nekouei RK, Sahajwalla V (2020) In-situ carbon-coated tin oxide (ISCC-SnO 2) for micro-supercapacitor applications. Carbon Lett 30(6):699–707

    Article  Google Scholar 

  35. Park S, Kim S (2013) Effect of carbon blacks filler addition on electrochemical behaviors of Co3O4/graphene nanosheets as a supercapacitor electrodes. Electrochim Acta 89:516–522

    Article  CAS  Google Scholar 

  36. Choi B-R, Park S-J, Kim S (2016) Effect of ionic liquids on the capacitance behaviors of activated carbon electrodes against organic Electrolytes. J Nanosci Nanotechnol 16(9):9149–9152

    Article  Google Scholar 

  37. Luanwuthi S, Krittayavathananon A, Srimuk P, Sawangphruk M (2015) In situ synthesis of permselective zeolitic imidazolate framework-8/graphene oxide composites: rotating disk electrode and Langmuir adsorption isotherm. RSC Adv 5(58):46617–46623

    Article  CAS  Google Scholar 

  38. Ahmed I, Khan NA, Jhung SH (2013) Graphite oxide/metal–organic framework (MIL-101): remarkable performance in the adsorptive denitrogenation of model fuels. Inorg Chem 52(24):14155–14161

    Article  CAS  Google Scholar 

  39. Baumann AE, Burns DA, Liu B, Thoi VS (2019) Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2(1):1–14

    Article  Google Scholar 

  40. Li H, Chen J, Zhang L, Wang K, Zhang X, Yang B, Yan X (2020) A metal–organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors. J Mater Chem A 8(32):16302–16311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Individual Basic Science and Engineering Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (MOE), Korea (Grant No.: NRF-2018R1D1A1B07047857). S. Kim thanks for the support from Yangyoung Foundation, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H.J., Kim, S. Preparation and capacitive property of graphene oxide composite supercapacitor electrodes functionalized by Fe-based metal–organic frameworks. Carbon Lett. 32, 273–283 (2022). https://doi.org/10.1007/s42823-021-00300-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00300-y

Keywords

Navigation