Skip to main content
Log in

C60 embedded diamond-like nanocomposite thin film

  • Rapid Communications
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Diamond-like nanocomposite (DLN) has become a promising thin film for many fields of applications due to its unique and tunable properties. However, low optical bandgap and thermal stability limits its application in many fields particularly as antireflection coating on solar cell. In the present study, the DLN thin film has been deposited using a mixed liquid precursor by rf-PECVD process. Surprisingly the presence of nc-C60 in FCC structure in DLN matrix has been observed. The degree of crystallinity and diameter of C60 have been increased significantly after annealed at 850 °C. The film has been annealed at 850 °C to primarily investigate its feasibility as antireflection coating (ARC) in compatible with industrial solar cell fabrication process. The refractive index and optical bandgap of the film were around 1.80 and 4.10 eV, respectively. Moreover, the optical bandgap has decreased to some extent to 3.92 eV even after annealing at such high temperature. The high SiOx at% and embedded nc-C60 enhanced the optical transparency and thermal stability of the DLN film. The solar-weighted average reflection of DLN-coated textured silicon was reduced significantly to 1.91%. The C60 embedded DLN film has a great potential to apply in different optoelectronic devices especially in solar cell as ARC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Tyagi A, Walia RS, Murtaza Q, Pandey SM, Tyagi PK, Bajaj B (2019) A critical review of diamond-like carbon coating for wear resistance applications. Int J Refract Metals Hard Mat 78:107

    Article  CAS  Google Scholar 

  2. De Barros Bouchet MI, Martin JM, Avila J, Kano M, Yoshida K, Tsuruda T, Bai S, Higuchi Y, Ozawa N, Kubo M, Asensio MC (2017) Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction. Sci Rep 7:46394

    Article  Google Scholar 

  3. Vetter J (2014) 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf Coat Technol 257:213

    Article  CAS  Google Scholar 

  4. Liua E, Li L (2005) Residual stresses of diamond and diamond-like carbon films. J Appl Phys 98:073515

    Article  Google Scholar 

  5. Ghosh B, Olivos FG, González RE (2017) Plasmon-enhanced optical absorption with graded bandgap in diamond-like carbon (DLC) films. J Mater Sci 52:218

    Article  CAS  Google Scholar 

  6. Louro C, Moura CW, Carvalho N, Stueber M, Cavaleiro A (2011) Thermal stability in oxidative and protective environments of a-C: H cap layer on a functional gradient coating. Diam Relat Mater 20:57

    Article  CAS  Google Scholar 

  7. Dorfman VF (1992) Diamond-like nanocomposites (DLN). Thin Solid Films 212:267

    Article  CAS  Google Scholar 

  8. Nakazawa H, Okuno S, Magara K, Nakamura K, Miura S, Enta Y (2016) Tribological properties and thermal stability of hydrogenated, silicon/nitrogen-coincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 55:12

    Article  Google Scholar 

  9. Santra TS, Liu CH, Bhattacharyya TK, Patel P, Barik TK (2010) Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition. J Appl Phys 107:031607

    Article  Google Scholar 

  10. Jana S, Das S, De D, Gangopadhyay U, Ghosh P, Mondal A (2014) Effect of annealing on structural and optical properties of diamond-like nanocomposite thin films. Appl Phys A 114:965

    Article  CAS  Google Scholar 

  11. Lee Y, Gong D, Balaji N, Lee Y-J, Yi J (2012) Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells. Nanoscale Res Lett 7:50

    Article  Google Scholar 

  12. Dwivedi N, Satyanarayana N, Yeo RJ, Xu H, Loh KP, Tripathy S, Bhatia CS (2015) Ultrathin carbon with interspersed graphene/fullerene-like nanostructures: a durable protective overcoat for high density magnetic storage. Sci Rep 5:11607

    Article  CAS  Google Scholar 

  13. Gangopadhyay U, Jana S, Das S, Ghosh P, Mondal A (2013) Anti-reflective nanocomposite based coating for crystalline silicon solar cells with noticeable significance. J Renew Sustain Energy 5:031607

    Article  Google Scholar 

  14. Jana S, Das S, De D, Mondal A, Gangopadhyay U (2018) Diamond-like nanocomposite: a novel promising carbon based thin film as antireflection and passivation coating for silicon solar cell. Mater Res Express 5:025601

    Article  Google Scholar 

  15. Kshirsagar A, Nyaupane P, Bodas D, Duttagupta SP, Gangal SA (2011) Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl Surface Sci 257:5052

    Article  CAS  Google Scholar 

  16. Niznansky D, Rehspringer JL (1995) Infrared study of SiO2 sol to gel evolution and gel aging. J Non-Cryst Solids 180:191

    Article  CAS  Google Scholar 

  17. Cataldo F, Strazzulla G, Iglesias-Groth S (2009) Stability of C60 and C70 fullerenes toward corpuscular and γ radiation. Mon Not R Astron Soc 394:615

    Article  CAS  Google Scholar 

  18. Keykhosravi S, Rietveld IB, Couto D, Tamarit JL, Barrio M, Céolin R, Moussa F (2019) [60]Fullerene for medicinal purposes, a purity criterion towards regulatory considerations. Mater 12:2571

    Article  CAS  Google Scholar 

  19. Wei D, Chen S, Liu Q (2015) Review of fluorescence suppression techniques in raman spectroscopy. Appl Spectrosc Rev 50:387

    Article  Google Scholar 

  20. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095

    Article  CAS  Google Scholar 

  21. Kuzmany H, Pfeiffer R, Salk N, Günther B (2004) The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42:911

    Article  CAS  Google Scholar 

  22. Meilunas R, Chang RPH (1991) Infrared and Raman spectra of C60 and C70 solid films at room temperature. J Appl Phys 70:5128

    Article  CAS  Google Scholar 

  23. Nathan MI, Smith JE Jr, Tu KN (1974) Raman spectra of glassy carbon. J Appl Phys 45:2370

    Article  CAS  Google Scholar 

  24. Quo Y, Karasawa N, Goddard WA III (1991) Prediction of fullerene packing in C60 and C70 crystals. Nature 351:464

    Article  Google Scholar 

  25. Wang H-C, Liao C-H, Chueh Y-L, Lai C-C, Chou P-C, Ting S-Y (2013) Crystallinity improvement of ZnO thin film by hierarchical thermal annealing. Opt Mater Express 3(2):295

    Article  CAS  Google Scholar 

  26. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal structure and bonding of ordered C60. Nature 353:147

    Article  CAS  Google Scholar 

  27. Yanxia Wu, Li H, Li Ji, Liu L, Ye Y, Chen J, Zhou H (2013) Effect of vacuum annealing on the microstructure and tribological behavior of hydrogenated amorphous carbon films prepared by magnetron sputtering. J Eng Tribology 227(7):729–737

    Google Scholar 

  28. Choi HW, Moon M-W, Kim T-Y, Lee K-R, Oh KH (2004) The thermal annealing effect on the residual stress and interface adhesion in the compressive stressed DLC film. Mat Res Soc Symp Proc, vol 795

  29. Obraztsova ED, Korotushenko KG, Pimenov SM, Ralchenko VG, Smolin AA, Konov VI, Loubnin EN (1995) Raman and photoluminescence investigations of nanograined diamond films. Nanostructured Mater 6:827

    Article  Google Scholar 

  30. Wen C, Aida T, Honma I, Komiyama H, Yamada K (1994) The optical absorption and photoluminescence spectra of C60 single crystals. J Phys: Condens Matter 6:8

    Google Scholar 

  31. Avdeenko A, Churakova N, Eremenko V, Gorbenko N, Pugachev A, Silaeva N, Tiunov Y, Zinoviev P (1998) Photoluminescence of C60 thin films at low temperatures. Mol Cryst Liq Cryst 324(1):89

    Article  CAS  Google Scholar 

  32. Melker AI, Krupina MA (2017) Modeling growth of midi-fullerenes from C48 to C72. Mater Phys Mech 34:29

    CAS  Google Scholar 

  33. Dunk PW, Kaiser NK, Hendrickson CL, Quinn JP, Ewels CP, Nakanishi Y, Sasaki Y, Shinohara H, Marshall AG, Kroto HW (2012) Closed network growth of fullerenes. Nat Commun 3:855

    Article  Google Scholar 

  34. Meškinis Š, Tamulevičienė A (2011) Structure, properties and applications of diamond like nanocomposite (SiOx Containing DLC) films: a review. Mater Sci (Medžiagotyra) 17(4):358–370

  35. Saraswati TE, Setiawan UH, Ihsan MR, Isnaeni I, Herbani Y (2019) The study of the optical properties of C60 fullerene in different organic solvents. Open Chem 17:1198–1212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors most sincerely acknowledge the DST, Govt. of India for financing support and Meghnad Saha Institute of Technology for infrastructural support. The authors also acknowledge Prof. H. Saha and Prof. R.N. Bhattacharya for technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhendu Jana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Das, S., De, D. et al. C60 embedded diamond-like nanocomposite thin film. Carbon Lett. 32, 193–200 (2022). https://doi.org/10.1007/s42823-021-00266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00266-x

Keywords

Navigation