Skip to main content
Log in

A short review on electrochemical exfoliation of graphene and graphene quantum dots

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The synthesis of graphene and graphene quantum dots (GQDs) employing various approaches with a range of precursors, chemicals, and parameters has been reported. Most of the top-down and bottom-up techniques employ strong and hazardous chemical environments, complicated and tedious procedures, are time-consuming, and often require special equipment. Another drawback of the techniques reported is the production of agglomerated, inhomogeneous, and non-dispersible graphene in aqueous solvents or organic solvents, thus limiting its application. This work specifically and comprehensively describes the electrochemical exfoliation of graphene and GQDs, which is often considered as a simple one-step, facile, non-hazardous, and highly efficient technique yet favourable for mass production. A brief discussion on the advantageous and challenges of the electrochemical technique and applications of the electrochemically exfoliated graphene and GQDs is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  2. Phiri J, Gane P, Maloney TC (2016) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B Solid State Mater Adv Technol 215:9–28. https://doi.org/10.1016/j.mseb.2016.10.004

    Article  CAS  Google Scholar 

  3. Prabhu SA, Kavithayeni V, Suganthy R, Geetha K (2020) Graphene quantum dots synthesis and energy application: a review. Carbon Lett. https://doi.org/10.1007/s42823-020-00154-w

    Article  Google Scholar 

  4. Xia Z, Maccaferri G, Zanardi C, Christian M, Ortolani L, Morandi V et al (2019) Dispersion stability and surface morphology study of electrochemically exfoliated bilayer graphene oxide. J Phys Chem C 123:15122–15130. https://doi.org/10.1021/acs.jpcc.9b03395

    Article  CAS  Google Scholar 

  5. Tarhini A, Tehrani-Bagha A, Kazan M, Grady B (2020) The effect of graphene flake size on the properties of graphene-based polymer composite films. J Appl Polym Sci 138:49821. https://doi.org/10.1002/app.49821

    Article  CAS  Google Scholar 

  6. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  7. Lawal Abdulazeez T (2019) Graphene-based nano composites and their applications. A review. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111384

    Article  Google Scholar 

  8. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188. https://doi.org/10.1021/cr500023c

    Article  CAS  Google Scholar 

  9. Arshad A, Jabbal M, Yan Y, Reay D (2019) A review on graphene based nanofluids: preparation, characterization and applications. J Mol Liq 279:444–484. https://doi.org/10.1016/j.molliq.2019.01.153

    Article  CAS  Google Scholar 

  10. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  11. Dong X, Cao Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Hybrid structure of zinc oxide nanorods and three-dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364–4369. https://doi.org/10.1039/c2ra01295b

    Article  CAS  Google Scholar 

  12. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207. https://doi.org/10.1038/nmat2382

    Article  CAS  Google Scholar 

  13. Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217. https://doi.org/10.1021/ja710234t

    Article  CAS  Google Scholar 

  14. Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210. https://doi.org/10.1016/j.carbon.2011.05.054

    Article  CAS  Google Scholar 

  15. Cirone J, Ahmed SR, Wood PC, Chen A (2019) Green synthesis and electrochemical study of cobalt/graphene quantum dots for efficient water splitting. J Phys Chem C 123:9183–9191. https://doi.org/10.1021/acs.jpcc.9b00951

    Article  CAS  Google Scholar 

  16. Miltenburg MB, Schon TB, Kynaston EL, Manion JG, Seferos DS (2017) Electrochemical polymerization of functionalized graphene quantum dots. Chem Mater 29:6611–6615. https://doi.org/10.1021/acs.chemmater.7b01700

    Article  CAS  Google Scholar 

  17. Wang D, Chen JF, Dai L (2014) Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Charact 32:515–523. https://doi.org/10.1002/ppsc.201400219

    Article  CAS  Google Scholar 

  18. Valappil MO, Pillai VK, Alwarappan S (2017) Spotlighting graphene quantum dots and beyond: synthesis, properties and sensing applications. Appl Mater Today 9:350–371. https://doi.org/10.1016/j.apmt.2017.09.002

    Article  Google Scholar 

  19. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mater Today Chem 10:221–258. https://doi.org/10.1016/j.mtchem.2018.09.007

    Article  CAS  Google Scholar 

  20. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699. https://doi.org/10.1039/c2cc00110a

    Article  CAS  Google Scholar 

  21. Li W, Li M, Liu Y, Pan D, Li Z, Wang L, Wu M (2018) Three minute ultrarapid microwave-assisted synthesis of bright fluorescent graphene quantum dots for live cell staining and white LEDs. ACS Appl Nano Mater 1:1623–1630. https://doi.org/10.1021/acsanm.8b00114

    Article  CAS  Google Scholar 

  22. Abbas A, Mariana LT, Phan AN (2018) Biomass-waste derived graphene quantum dots and their applications. Carbon 140:77–99. https://doi.org/10.1016/j.carbon.2018.08.016

    Article  CAS  Google Scholar 

  23. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2014) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636. https://doi.org/10.1002/smll.201402648

    Article  CAS  Google Scholar 

  24. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. AngewandteChemie Int Ed 51:11371–11375. https://doi.org/10.1002/anie.201206554

    Article  CAS  Google Scholar 

  25. Li Y, Li S, Wang Y, Wang J, Liu H, Liu X et al (2017) Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys Chem Chem Phys 19:11631–11638. https://doi.org/10.1039/c6cp06377b

    Article  CAS  Google Scholar 

  26. Zhang X, Wei C, Li Y, Yu D (2019) Shining luminescent graphene quantum dots: synthesis, physicochemical properties, and biomedical applications. TrAC Trends Anal Chem 116:109–121. https://doi.org/10.1016/j.trac.2019.03.011

    Article  CAS  Google Scholar 

  27. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860. https://doi.org/10.1039/c1cc11122a

    Article  CAS  Google Scholar 

  28. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H et al (2012) Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22:3314–3318. https://doi.org/10.1039/c2jm16005f

    Article  CAS  Google Scholar 

  29. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849. https://doi.org/10.1021/nl2038979

    Article  CAS  Google Scholar 

  30. Danial WH, Chutia A, Majid ZA, Aziz M (2015) Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system. AIP Conf Proc 1669:020020

    Article  Google Scholar 

  31. Ahirwar S, Mallick S, Bahadur D (2017) Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega 2:8343–8353. https://doi.org/10.1021/acsomega.7b01539

    Article  CAS  Google Scholar 

  32. Deng J, Lu Q, Li H, Zhang Y, Yao S (2015) Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring. RSC Adv 5:29704–29707. https://doi.org/10.1039/c4ra16805d

    Article  Google Scholar 

  33. Ananthanarayanan A, Wang X, Routh P, Sana B, Lim S, Kim DH et al (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24:3021–3026. https://doi.org/10.1002/adfm.201303441

    Article  CAS  Google Scholar 

  34. Peng J, Zhao Z, Zheng M, Su B, Chen X, Chen X (2019) Electrochemical synthesis of phosphorus and sulfur co-doped graphene quantum dots as efficient electrochemiluminescent immunomarkers for monitoring okadaic acid. Sens Actuators B Chem 304:127383. https://doi.org/10.1016/j.snb.2019.127383

    Article  CAS  Google Scholar 

  35. He M, Guo X, Huang J, Shen H, Zeng Q, Wang L (2018) Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon 140:508–520. https://doi.org/10.1016/j.carbon.2018.08.067

    Article  CAS  Google Scholar 

  36. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  37. Guerrero-Contreras J, Caballero-Briones F (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater Chem Phys 153:209–220. https://doi.org/10.1016/j.matchemphys.2015.01.005

    Article  CAS  Google Scholar 

  38. Lee I, Nam J, Park SJ et al (2020) Rapid chemical vapor deposition of graphene using methanol as a precursor. Carbon Lett. https://doi.org/10.1007/s42823-020-00166-6

    Article  Google Scholar 

  39. Lee SH, Kim DY, Lee J, Lee SB, Han H, Kim YY, Mun SC, Im SH, Kim TH, Park OO (2019) Synthesis of single-crystalline hexagonal graphene quantum dots from solution chemistry. Nano Lett 19:5437–5442. https://doi.org/10.1021/acs.nanolett.9b01940

    Article  CAS  Google Scholar 

  40. Htwe YZN, Chow WS, Suda Y, Thant AA, Mariatti M (2018) Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Appl Surf Sci 469:951–961. https://doi.org/10.1016/j.apsusc.2018.11.029

    Article  CAS  Google Scholar 

  41. Alanyalioǧlu M, Segura JJ, Oró-Sol J, Casañ-Pastor N (2011) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50:142–152. https://doi.org/10.1016/j.carbon.2011.07.064

    Article  CAS  Google Scholar 

  42. Zhong YL, Swager TM (2012) Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J Am Chem Soc 134:17896–17899. https://doi.org/10.1021/ja309023f

    Article  CAS  Google Scholar 

  43. Tiwari SK, Huczko A, Oraon R, De Adhikari A, Nayak GC (2015) Facile electrochemical synthesis of few layered graphene from discharged battery electrode and its application for energy storage. Arab J Chem 10:556–565. https://doi.org/10.1016/j.arabjc.2015.08.016

    Article  CAS  Google Scholar 

  44. Ambrosi A, Pumera M (2015) Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem Eur J 22:153–159. https://doi.org/10.1002/chem.201503110

    Article  CAS  Google Scholar 

  45. Punith Kumar MK, Shanthini S, Srivastava C (2015) Electrochemical exfoliation of graphite for producing graphene using saccharin. RSC Adv 5:53865–53869. https://doi.org/10.1039/c5ra07846f

    Article  Google Scholar 

  46. Wang H, Wei C, Zhu K, Zhang Y, Gong C, Guo J et al (2017) Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films. ACS Appl Mater Interfaces 9:34456–34466. https://doi.org/10.1021/acsami.7b09891

    Article  CAS  Google Scholar 

  47. Parvez K, Li R, Puniredd SR, Hernandez Y, Hinkel F, Wang S et al (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7:3598–3606. https://doi.org/10.1021/nn400576v

    Article  CAS  Google Scholar 

  48. Wang X, Zhang L (2019) Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems. RSC Adv 9:3693–3703. https://doi.org/10.1039/c8ra09752f

    Article  CAS  Google Scholar 

  49. Lim S, Han JH, Kang HW, Lee JU, Lee W (2019) Preparation of electrochemically exfoliated graphene sheets using DC switching voltages. Carbon Lett. https://doi.org/10.1007/s42823-019-00110-3

    Article  Google Scholar 

  50. Lee J, Noh S, Pham ND, Shim JH (2019) Top-down synthesis of S-doped graphene nanosheets by electrochemical exfoliation of graphite: metal-free bifunctional catalysts for oxygen reduction and evolution reactions. Electrochim Acta 313:1–9. https://doi.org/10.1016/j.electacta.2019.05.015

    Article  CAS  Google Scholar 

  51. Zhao X, Li H, Han F, Dai M, Sun Y, Song Z et al (2019) Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. J Phys Chem Solids 139:109301. https://doi.org/10.1016/j.jpcs.2019.109301

    Article  CAS  Google Scholar 

  52. Sharif F, Zeraati AS, Ganjeh-Anzabi P, Yasri N, Perez-Page M, Holmes SM et al (2019) Synthesis of a high-temperature stable electrochemically exfoliated graphene. Carbon 157:681–692. https://doi.org/10.1016/j.carbon.2019.10.042

    Article  CAS  Google Scholar 

  53. Tang W, Sun D, Liu S, Li B, Sun W, Fu J et al (2019) One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep Purif Technol 236:116293. https://doi.org/10.1016/j.seppur.2019.116293

    Article  CAS  Google Scholar 

  54. Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2019) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24:25–34. https://doi.org/10.1007/s10008-019-04449-5

    Article  CAS  Google Scholar 

  55. Yang S, Brüller S, Wu ZS, Liu Z, Parvez K, Dong R et al (2015) Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J Am Chem Soc 137:13927–13932. https://doi.org/10.1021/jacs.5b09000

    Article  CAS  Google Scholar 

  56. Zhao Z, Cai W, Xu Z, Mu X, Ren X, Zou B et al (2019) Multi-role p-styrene sulfonate assisted electrochemical preparation of functionalized graphene nanosheets for improving fire safety and mechanical property of polystyrene composites. Compos B Eng 181:107544. https://doi.org/10.1016/j.compositesb.2019.107544

    Article  CAS  Google Scholar 

  57. Zhou F, Huang H, Xiao C, Zheng S, Shi X, Qin J et al (2018) Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J Am Chem Soc 140:8198–8205. https://doi.org/10.1021/jacs.8b03235

    Article  CAS  Google Scholar 

  58. Tan X, Li Y, Li X, Zhou S, Fan L, Yang S (2014) Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem Commun 51:2544–2546. https://doi.org/10.1039/c4cc09332a

    Article  CAS  Google Scholar 

  59. Huang H, Yang S, Li Q, Yang Y, Wang G, You X et al (2017) Electrochemical cutting in weak aqueous electrolytes: the strategy for efficient and controllable preparation of graphene quantum dots. Langmuir 34:250–258. https://doi.org/10.1021/acs.langmuir.7b03425

    Article  CAS  Google Scholar 

  60. Yan Y, Li H, Wang Q, Mao H, Kun W (2017) Controllable ionic liquid-assisted electrochemical exfoliation of carbon fibers for the green and large-scale preparation of functionalized graphene quantum dots endowed with multicolor emission and size tunability. J Mater Chem C 5:6092–6100. https://doi.org/10.1039/c7tc01342f

    Article  CAS  Google Scholar 

  61. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y et al (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461–7467. https://doi.org/10.1039/c2jm16835a

    Article  CAS  Google Scholar 

  62. Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J 18:12522–12528. https://doi.org/10.1002/chem.201201043

    Article  CAS  Google Scholar 

  63. Muthurasu A, Dhandapani P, Ganesh V (2016) Facile and simultaneous synthesis of graphene quantum dots and reduced graphene oxide for bio-imaging and supercapacitor applications. New J Chem 40:9111–9124. https://doi.org/10.1039/c6nj00586a

    Article  CAS  Google Scholar 

  64. Kalita H, Palaparthy VS, Baghini MS, Aslam M (2020) Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 165:9–17. https://doi.org/10.1016/j.carbon.2020.04.021

    Article  CAS  Google Scholar 

  65. Luo P, Guan X, Yu Y, Li X (2017) New insight into electrooxidation of graphene into graphene quantum dots. Chem Phys Lett 690:129–132. https://doi.org/10.1016/j.cplett.2017.10.047

    Article  CAS  Google Scholar 

  66. Fu Y, Gao G, Zhi J (2019) Electrochemical synthesis of multicolor fluorescent N-doped graphene quantum dots as a ferric ion sensor and their application in bioimaging. J Mater Chem B 7:1494–1502. https://doi.org/10.1039/c8tb03103g

    Article  CAS  Google Scholar 

  67. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22:4732–4740. https://doi.org/10.1002/adfm.201201499

    Article  CAS  Google Scholar 

  68. Zhong YL, Tian Z, Simon GP, Li D (2014) Scalable production of graphene via wet chemistry: progress and challenges. Mater Today 18:73–78. https://doi.org/10.1016/j.mattod.2014.08.019

    Article  CAS  Google Scholar 

  69. Coroş M, Pogəcean F, Roşu MC, Socaci C, Borodi G, Mageruşan L et al (2016) Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Adv 6:2651–2661. https://doi.org/10.1039/c5ra19277c

    Article  Google Scholar 

  70. Liu F, Wang C, Sui X, Riaz MA, Xu M, Wei L, Chen Y (2019) Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy. https://doi.org/10.1002/cey2.14

    Article  Google Scholar 

  71. Shi L, Yang JH, Zeng HB, Chen YM, Yang SC, Wu C et al (2016) Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8:14374–14378. https://doi.org/10.1039/c6nr00451b

    Article  CAS  Google Scholar 

  72. Choi Y, Kang B, Lee J, Kim S, Kim GT, Kang H et al (2016) Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem Mater 28:6840–6847. https://doi.org/10.1021/acs.chemmater.6b01710

    Article  CAS  Google Scholar 

  73. Brownson DAC, Banks CE (2011) Graphene electrochemistry: fabricating amperometric biosensors. Analyst 136:2084–2089. https://doi.org/10.1039/c0an00875c

    Article  CAS  Google Scholar 

  74. Brownson DAC, Metters JP, Kampouris DK, Banks CE (2011) Graphene electrochemistry: surfactants inherent to graphene can dramatically effect electrochemical processes. Electroanalysis 23:894–899. https://doi.org/10.1002/elan.201000708

    Article  CAS  Google Scholar 

  75. Bonanni A, Pumera M (2012) Surfactants used for dispersion of graphene exhibit strong influence on electrochemical impedance spectroscopic response. Electrochem Commun 16:19–21. https://doi.org/10.1016/j.elecom.2011.12.012

    Article  CAS  Google Scholar 

  76. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891. https://doi.org/10.1021/ja203725d

    Article  CAS  Google Scholar 

  77. Cooper AJ, Wilson NR, Kinloch IA, Dryfe RAW (2013) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350. https://doi.org/10.1016/j.carbon.2013.09.009

    Article  CAS  Google Scholar 

  78. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339. https://doi.org/10.1021/nn200025p

    Article  CAS  Google Scholar 

  79. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  80. Xia ZY, Giambastiani G, Christodoulou C, Nardi MV, Koch N, Treossi E, Bellani V, Pezzini S, Corticelli F, Morandi V, Zanelli A, Palermo V (2014) Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes. ChemPlusChem 79:439–446. https://doi.org/10.1002/cplu.201300375

    Article  CAS  Google Scholar 

  81. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M (2016) Graphene and its electrochemistry—an update. Chem Soc Rev 45:2458–2493. https://doi.org/10.1039/c6cs00136j

    Article  Google Scholar 

  82. Sayah A, Habelhames F, Bahloul A, Nessark B, Bonnassieux Y, Tendelier D, El Jouad M (2018) Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J Electroanal Chem 818:26–34. https://doi.org/10.1016/j.jelechem.2018.04.016

    Article  CAS  Google Scholar 

  83. Achee TC, Sun W, Hope JT, Quitzau SG, Sweeney CB, Shah SA, Habib T, Green MJ (2018) High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 8:14525. https://doi.org/10.1038/s41598-018-32741-3

    Article  CAS  Google Scholar 

  84. Qiu M, Wang D, Zhang L, Li M, Liu M, Fu S (2020) Electrochemical exfoliation of water-dispersible graphene from graphite towards reinforcing the mechanical and flame-retardant properties of poly (vinyl alcohol) composites. Mater Chem Phys 254:123430. https://doi.org/10.1016/j.matchemphys.2020.123430

    Article  CAS  Google Scholar 

  85. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18. https://doi.org/10.1021/ja206030c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FRGS/1/2018/STG01/UIAM/03/2) (FRGS19-015-0623), Ministry of Higher Education (MOHE), Malaysia and Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Hazman Danial.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danial, W.H., Norhisham, N.A., Ahmad Noorden, A.F. et al. A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Lett. 31, 371–388 (2021). https://doi.org/10.1007/s42823-020-00212-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00212-3

Keywords

Navigation