Skip to main content

Advertisement

Log in

Graphene quantum dots synthesis and energy application: a review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene Quantum Dots (GQDs), zero-dimensional nanoparticles which are derived from carbon-based sources owned the new pavement for the energy storage applications. With the varying synthesis routes, the in-built properties of GQDs are enhanced in different categories like quantum efficiency, nominal size range, and irradiation wavelength which could be applied for the several of energy and optoelectronics applications. GQDs are especially applicable in the specific energy storage devices such as super capacitors, solar cells, and lithium-ion batteries which were demonstrated in this work. This paper critically reviews about the synthesis techniques used for the GQDs involving energy storage applications with increased capacitance, energy conversion, retention capability, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bak S, Kim D, Lee H (2016) Graphene Quantum dots and their possible energy application: a review. Curr Appl Phys 16(9):1192–1201

    Google Scholar 

  2. Feng J, Dong H, Yu L, Dong L (2017) Optical and electronic properties of graphene quantum dots with qxygen-containing groups: a dendity functional theory study. J Mater Chem C 5(24):5984–5993

    CAS  Google Scholar 

  3. Wei D, Liu Y (2010) Controllable synthesis of graphene and its application. Adv Mater 22(30):3225–3241

    CAS  Google Scholar 

  4. Bacon M, Bradley SJ, Nann T (2013) Graphene quantum dots. Adv Mater 31(4):415–428

    Google Scholar 

  5. Changcheng Jiang ZD, Cheng H, Zhao Y, Shi G, Jiang L, Qu L (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater.

  6. Yu L, Wu HB, Lou XWD (2017) Self-Templated Formation of Hollow Structures. Acc Chem Res. 50(2):293–301

    CAS  Google Scholar 

  7. XiaomingLi MR, Song J, Shen Z, Zeng H (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947

    Google Scholar 

  8. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501

    Google Scholar 

  9. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191

    CAS  Google Scholar 

  10. Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301

    CAS  Google Scholar 

  11. Gupta S, Smith T, Banaszak A, Boeckl J (2017) Graphene quantum dots electrochemistry and sensitive electrocatalytic glucose sensor development. Nanomaterials 7:301

    Google Scholar 

  12. Elinollahzadeh H, Dariani RS, Fazeli SM (2016) Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximation. Solid State Communication 229:1–4

    Google Scholar 

  13. Quhe R, Ma J, Zeng Z, Tang K, Zheng J, Wang Y, Ni Z, Wang L, Gao Z, Shi J, Ju J (2013) Tunable band gap in few-layer graphene by surface adsorption. Scientific Reports 3, Article number: 1796.

  14. Kim S, Hwang SW, Kim M-K, Shin DY, Shin DH, Kim CO, Yang SB, Park JH, Hwang E, Choi S-H, Ko G, Sim S, Sne C, Choi HJ, Bae S, Hong BH (2012) Anomalous behaviors of visible luminesecence from graphene quantum dots: interplay between size and shape. ACS Nano 6(9):8203–8208

    CAS  Google Scholar 

  15. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    CAS  Google Scholar 

  16. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Materials Today Chemistry 10(2018):221–258

    CAS  Google Scholar 

  17. Gong L, Yang R, Liu R, Chen L, Yan Y, Feng Z (2019) Application of graphene quantum dots in energy storage devices. Progress Chem 31(7):1020–1030

    Google Scholar 

  18. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Kanyi Pu, Liu J, Chen P (2019) Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater 2019(31):1808283

    Google Scholar 

  19. Ran C, Wang M, Gao W, Yang Z, Shao J, Deng J, Song X (2014) A general route to enhance the fluorescence of graphene quantum dots by Ag nanoparticles. RSC Adv 4:21772

    CAS  Google Scholar 

  20. Karimzadeh A, Hasanzadeh M, Shadjou N, de la Guardia M (2018) Optical bio (sensing) using nitrogen doped graphene quantum dots: recent advances and future challenges. TrAC Trends Anal Chem 108:110–121

    CAS  Google Scholar 

  21. Liu W-W, Feng Y-Q, Yan X-B, Chen J-T, Xue Q-J (2013) Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater 23:4111–4122

    CAS  Google Scholar 

  22. Zhu Z, Ma J, Wang Z, Cheng Mu, Fan Z, Lili Du, Bai Y, Fan L, Yan He, Phillips DL, Yang S (2014) Efficience enhancement of perovskite solar cells through fast electron: the role of graphene quantum dots. J Am Chem Soc 136:3760–3763

    CAS  Google Scholar 

  23. Ruiyi Li, Yuanyuan J, Xiaoyan Z, Li Zaijun Gu, Zhiguo WG, Junkang L (2015) Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots”. Electrochim Acta 178:303–311

    Google Scholar 

  24. Kwon W, Rhee S-W (2012) Facile synthesis of graphitic carbon quantum dots with size tenability and uniformity using reverse micelles. Chem Commun 48:5256

    CAS  Google Scholar 

  25. Lin L, Xu Y, Zhang S, Ross IM, Ong A, Allwood DA (2014) Fabrication and luminescence of monolayered boron nitride quantum dots. Small 10:60

    CAS  Google Scholar 

  26. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, J. (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. Am Chem Soc 128:7756

    CAS  Google Scholar 

  27. Liu R, Wu D, Feng X, Müllen K (2011) Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133:15221

    CAS  Google Scholar 

  28. Buzaglo M, Shtein M, Regev O (2015) Graphene quantum dots produced by microfluidization. Chem Mater 28:21

    Google Scholar 

  29. Pan D, Zhang J, Li Z, Minghong Wu (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 2010(22):734–738

    Google Scholar 

  30. Sofer Z, Bouša D, Luxa J, Mazanek V, Pumera M (2016) Few-layer black phosphorus nanoparticle. Chem Commun 52:1563

    CAS  Google Scholar 

  31. Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L, Wu M (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357

    CAS  Google Scholar 

  32. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan AW, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun AH, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860

    CAS  Google Scholar 

  33. Q Liu, B Guo, Z Rao, B Zhang, JR Gong (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett.

  34. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mcgovern T, Holland B, M Byrne, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    CAS  Google Scholar 

  35. Li H, He X, Liu Y, Huang H, Lian S, Lee S-T, Kang Z (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    CAS  Google Scholar 

  36. Paton KR et al. (2014) Scalable production of large quantities of defect-free few-layer graphene by shear-exfoliation in liquids. Nat Mater 13:624–630

    CAS  Google Scholar 

  37. Lu L, Zhu Y, Shi C, Pei YT (2016) Large-scale synthesis of defects-selective graphene quantum dots by ultrasonic assisted liquid-phase exfoliation. Carbon 109:373–383

    CAS  Google Scholar 

  38. G. Sandeep Kumar, Rajarshi Roy, Dipayan Sen, Uttam Kumar Ghorai, Ranjit Thapa, Nilesh Mazumder, SubhajitSaha and Kalyan K. Chattopadhyay, (2014), Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence, Nanoscale, 6, 3384

  39. Zhu Y, Wang G, Jiang H, Chen L, Zhang X (2014) One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and its application in sensing of alkaline phosphatas. Chem Comm 51:948–951

    Google Scholar 

  40. Ali J, Siddiqui G-U-D, Yang YJ, Lee KT, Um K, Choi KH (2016) Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching array. RSC Advances 6:5068–5078

    CAS  Google Scholar 

  41. Deng J, Qiujun Lu, Mi N, Li H, Liu M, Mancai Xu, Tan L, QingjiXie YZ, Yao S (2014) Electrochemical synthesis of carbon nanodots directly from alcohols. Chem Eur J 20:4993–4999

    CAS  Google Scholar 

  42. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230

    CAS  Google Scholar 

  43. Li Y, Yue Hu, Zhao Y, Shi G, Deng L, Hou Y, Liangti Qu (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Google Scholar 

  44. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Research 8(2):355–381

    CAS  Google Scholar 

  45. Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745

    CAS  Google Scholar 

  46. Zhang M, Bai L, Shang W, Wenjing Xie A, Ma H, Fu Y, DecaiFang A, Sun AH, Fan L, Han M, Liub C, Yang S (2012), Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells, J Mater Chem 22:7461

  47. Tan X, Li Y, Li X, Zhou S, Fan L, Yang S (2015) Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem Commun 51:2544–2546

    CAS  Google Scholar 

  48. Luo P, Guan X, Yu Y, Li X (2017) New insight into electrooxidation of graphene into graphene quantum dots. Chem Phys Lett 690:129–132

    CAS  Google Scholar 

  49. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110

    CAS  Google Scholar 

  50. Huang Z, Lin F, Ming Hu, Li C, Ting Xu, Chen C, Guo X (2014) Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid. J Lumin 151:100–105

    CAS  Google Scholar 

  51. Umrao S, Jang M-H, Oh J-H, Kim G, Sahoo S, Cho Y-H, Srivastva A, Oh Il-K (2015) Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: new platform for enzyme-free detection of hydrogen peroxide. Carbon 81:514–524

    CAS  Google Scholar 

  52. Zhang C, Cui Y, Song L, Liu X, Hu Z (2015) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150:54–60

    Google Scholar 

  53. Zhao P, Li C, Yang M (2016) Microwave assisted one-pot conversion fromdeoiled asphalt to green fluorescent graphene quantum dots and their interfacial properties. J Dispersion Sci Technol ISSN 0193–2691:1532–2351

    Google Scholar 

  54. Kumawat MK, Thakur M, Gurung RB, Srivastava R (2017) Graphene quantum dots from mangiferaindica: application in near infrared bioimaging and intracellular nanothermometry. ACS Sustain Chem Eng 5:1382–1391

    CAS  Google Scholar 

  55. Chun Kiang Chua, ZdenekSofer, Petr Simek, OndrejJankovsky, KaterinaKlı´mova´, SnejanaBakardjieva, St epa´nkaHrdlickova´ Kuckova´, and Martin Pumera, (2014), Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene, ACS Nano

  56. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    CAS  Google Scholar 

  57. Li L-S, Yan X (2010) Colloidal graphene quantum dots”. J Phys Chem Lett 1:2572–2576

    CAS  Google Scholar 

  58. Xin Ting Zheng ,ArundithiAnanthanarayanan , Kathy Qian Luo , and Peng Chen, (2015), Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications, small, 11, No. 14, 1620–1636

  59. Yan X, Cui X, Li B, Li L-S (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10:1869–1873

    CAS  Google Scholar 

  60. Yan X, Li B, Li L-S (2012) colloidal graphene quantum dots with well-defined structures. Account Chem Res 46(10):2254–2262

    Google Scholar 

  61. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalyst. Nanoscale 5:12272–12277

    CAS  Google Scholar 

  62. Wang F, Zhenyan Gu, Lei Wu, Wang W, Xia X, Hao Q (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens Actuators B 190:516–522

    CAS  Google Scholar 

  63. Zhang Y-Y, Wu M, Wang Y-Q, He X-W, Li W-Y, Feng X-Z (2013) A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent. Talanta 117:196–202

    CAS  Google Scholar 

  64. Zhu X, XiaoxiZuo RH, Xiao X, Liang Y, Nan J (2014) Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescenc. Mater Chem Phys 147:963–967

    CAS  Google Scholar 

  65. Sangam S et al (2018) Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond. Green Chem 20:4245–4259

    CAS  Google Scholar 

  66. Yang B, Chen J, Cui L, Liu W (2015) Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots, Electron Suppl Material (ESI).

  67. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications, Adv Funct Mater.

  68. Dong LM, Shi DY, Wu Z, Li Q, Han ZD (2015) Improved solvothermal method for cutting graphene oxide into graphene quantum dots. Digest J Nanomaterials Biostruct 10(3):855–864

    Google Scholar 

  69. Hou X, Li Y, Zhao C (2015) Microwave-assisted synthesis of nitrogen-doped multi-layer graphene quantum dots with oxygen-rich functional groups. Aust J Chem 69(3):357–360

    Google Scholar 

  70. LibinTang RJ, Li X, Teng KS, Lau SP (2013) Size-dependent structural and optical characteristicsof glucose-derived graphene quantum dots. Part Part Syst Charact 30:523–531

    Google Scholar 

  71. Xu Wu, Tian F, Wang W, Chen J (2013) Min Wu and Julia Xiaojun Zhao, “Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing”. J Mater Chem C 1:4676

    Google Scholar 

  72. Lee NE, Lee SY, Lim HS, Yoo SH, Cho SO (2020) A novel route to high-quality grapheme quantum dots by hydrogen-assistedpyrolysis of silicon carbide. Nanomaterials 10:277

    CAS  Google Scholar 

  73. Li R, Liu Y, Li Z, Shen J, Yang Y, Cui X, Yang G (2016) Bottom-up fabrication of single-layered nitrogen doped graphene quantum dots through intermolecular carbonization arrayed in a 2D plane. Chem Eur J 22:272–278

    Google Scholar 

  74. Bak S, Kim D, Lee H (2016) Graphene quantum dots and their possible energy applications: a review. Curr Appl Phys 16:1192–1201

    Google Scholar 

  75. Lee K et al (2016) Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 26:746–754

    CAS  Google Scholar 

  76. Jung HY et al (2012) Transparent, flexible supercapacitors from nano-engineered carbon films. Scientific reports 2:773

    Google Scholar 

  77. Chen T et al (2014) High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Rep 4:3612

    Google Scholar 

  78. El-Kady MF et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–2133

    CAS  Google Scholar 

  79. Stoller MD et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    CAS  Google Scholar 

  80. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:2446

    Google Scholar 

  81. Chen Q et al (2014) Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors. Phys Chem Chem Phys 16:19307–19313

    CAS  Google Scholar 

  82. Sanjoy M, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chemical Communications, vol. 51, pp. 12365–12368

  83. Liu WW et al, (2013), Superior micro supercapacitors based on graphene quantum dots, Advanced Functional Materials, vol. 23, pp. 4111–4122

  84. Shuo Z et al (2018) High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl Materials Interfaces 10:12983–12991

    Google Scholar 

  85. Luo J, Wang J, Liu S, Wu W, Jia T, Yang Z, Mu S, Huang Y (2019) Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146:1–8

    CAS  Google Scholar 

  86. Abdallah Ramadan M, Anas SE, Soliman M, Abou-Aly A (2020) Effect of co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. J Mater Sci 2020(31):7247–7259

    Google Scholar 

  87. Qiu H, Sun X, An S, Lan D, Cui J, Zhang Y, He W (2020) Microwave synthesis of histidine-functionalized graphene quantum dots/Ni-Co LDH with flower ball structure for supercapacitor. J Colloid Interface Sci 567:264–273

    CAS  Google Scholar 

  88. Abidin SNJSZ, Shuhazlly Mamat Md, Rasyid SA, Zainal Z, Sulaiman Y (2015) Electropolymerization of poly(3,4 ethylenedioxythiophene) onto polyvinyl alcohol graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor. Electrochim Acta 261:548–558

    Google Scholar 

  89. Senlin D et al (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:P359–366

    Google Scholar 

  90. Yan X, Cui X, Li B, Li L (2010) Large solution-processable graphene quantum dotsas light absorbers for photovoltaics. Nano Lett 10:1869–1873

    CAS  Google Scholar 

  91. Chen L, Guo CX, Zhang Q, Lei Y, Xie J, Ee S et al (2013) Graphene quantum-dotdopedpolypyrrole counter electrode for high-performance dye-sensitized solar cells. ACS Appl Mater Interfaces 5:2047–2052

    CAS  Google Scholar 

  92. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939

    CAS  Google Scholar 

  93. Kim JK, Park MJ, Kim SJ, Wang DH, Cho SP, Bae S et al (2013) Balancing lightabsorptivity and carrier conductivity of graphene quantum dots for highefficiencybulk heterojunction solar cells. ACS Nano 7:7207–7212

    CAS  Google Scholar 

  94. Li M, Ni W, Kan B, Wan X, Zhang L, Zhang Q et al (2013) Graphene quantum dotsas the hole transport layer material for high-performance organic solar cells. Phys Chem Chem Phys 15:18973–18978

    CAS  Google Scholar 

  95. Zhang Z et al (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5:8869–8890

    CAS  Google Scholar 

  96. Lee D, Seo J, Zhu X, Lee J, Shin HJ, Cole JM, Su (2013) Quantum confinement-induced tunable exciton states in graphene oxide. Scientific reports, vol. 3, pp. 2250

  97. Williams KJ et al (2013) Hot electron injection from graphene quantum dots to TiO2. ACS Nano 7:1388–1394

    CAS  Google Scholar 

  98. Novak TG et al (2016) Fast P3HT exciton dissociation and absorption enhancement of organic solar cells by PEG-functionalized graphene quantum dots. Small 12:994–999

    CAS  Google Scholar 

  99. Zonglong Z et al (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136:3760–3763.

  100. Liu T et al (2017) A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J Materials Chem A 5:17848–17855

    CAS  Google Scholar 

  101. Gebreegziabher GG, Asemahegne AS, Ayele DW, Mani D, Sahu RNPP, Kumar A (2020) Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell. Carbon Lett 30(1):1–11

    Google Scholar 

  102. Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi He, Chang J, Lin Z, Zhang J, Hao Y (2020) Boosting performance of perovskite solar cells with graphene quantum dots decorated SnO2 electron transport layers. Appl Surf Sci 507:145099

    CAS  Google Scholar 

  103. Bian H, Wang Q, Yang S, Yan DC, Wang H, Liang L, Jin Z, Wang G, Liu SF (2019) Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiencybeyond 16%. J Mater Chem A 7:5740

    CAS  Google Scholar 

  104. Porfarzollah A, Mohammad-Rezaei R, Bagheri M (2020) Ionic liquid-functionalized graphene quantum dots as an efficient quasi-solid-state electrolyte for dye-sensitized solar cells. J Mater Sci 31:2288–2297

    CAS  Google Scholar 

  105. Vlad A et al (2015) Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Materials 5:1402115

    Google Scholar 

  106. Chen YM et al (2018) Minimization of Ion-solvent clusters in gel electrolytes containing graphene oxide quantum dots for lithium/ion batteries. Small 14:1703571

    Google Scholar 

  107. Meng J et al (2017) Advances in structure and property optimizations of battery electrode materials. Joule.

  108. Choi NS et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie Int Edition 51:9994–10024

    CAS  Google Scholar 

  109. Chao D et al (2014) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15(1):565–573

    Google Scholar 

  110. Ruiyi Li et al (2015) Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion batterybythe hybrid of nitrogen and sulfur co-doped graphene quantum dots. Electrochim Acta 178:303–311

    Google Scholar 

  111. Khan F, Oh M, Kim JH (2019) N-functionalized graphene quantum dots: charge transporting layer for high-rate and durable Li4Ti5O12-based Li-ion battery. Chem Eng J 369:1024–1033

    CAS  Google Scholar 

  112. Van Tam T, Kang SG, Kim MH, Lee SG, Hur SH, Chung JS, Choi WM (2019) Novel graphene hydrogel/b-doped graphene quantum dots composites as trifunctional electrocatalysts for zn-air batteries and overall water splitting. Adv Energy Mater 9:1900945

    Google Scholar 

  113. Yin X, Zhi C, Sun W, Lv L-P, Wang Y (2019) Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J Mater Chem A 7:7800

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

APS, KV, and SR are equally contributing their effort to draft the manuscript. GK2* reviewed and corrected the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Geetha.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, S.A., Kavithayeni, V., Suganthy, R. et al. Graphene quantum dots synthesis and energy application: a review. Carbon Lett. 31, 1–12 (2021). https://doi.org/10.1007/s42823-020-00154-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00154-w

Keywords

Navigation