Skip to main content

Advertisement

Log in

Silane coupling agent assisting dopamine-functionalized biomass porous carbons for enhanced adsorption of organic acids: effects of acid–alkali activation on microstructure

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Biomass porous carbons derived from Laminaria japonica were prepared by KOH and H3PO4 activation methods, respectively. The results indicated that the chemical activation had an apparent effect on the molecular framework and space of materials. To enhance the selective adsorption for organic acids, biomass carbons were modified by dopamine combined with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane. The SEM and BET results illustrated the effect of the chemical activation approach on the morphology and porous texture. The biomass porous carbon using KOH activation method had the highest surface area (up to 1558 m2/g). Compared with unmodified materials, the modified materials showed higher adsorption capacity for organic acids (27.90 μg/mL for chlorogenic acid and 25.47 μg/mL for caffeic acid). It was suggested that modification of porous carbons might be a viable pathway to increase the specific adsorption affinity and efficiency for organic acids in dried jujube samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCs:

Biomass carbons

DA:

Dopamine

PDA:

Poly-dopamine

KH-792:

N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane

CGA:

Chlorogenic acid

CFA:

Caffeic acid

References

  1. Chen YJ, Ji SF, Wang YG, Dong JC, Chen WX, Li Z, Shen RA, Zheng LR, Zhuang ZB, Wang DS, Li Y (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Edit 56:6937–6941. https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  2. Borghei M, Lehtonen J, Liu L, Rojas Orlando J (2017) Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv Mater 30:1703691. https://doi.org/10.1002/adma.201703691

    Article  CAS  Google Scholar 

  3. Wang EJ, Sui ZY, Sun YN, Ma Z, Han BH (2018) Effect of porosity parameters and surface chemistry on carbon dioxide adsorption in sulfur-doped porous carbons. Langmuir 34:6358–6366. https://doi.org/10.1021/acs.langmuir.7b04370

    Article  CAS  Google Scholar 

  4. Li G, Sun J, Hou W, Jiang S, Huang Y, Geng J (2016) Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat Commun 7:10601. https://doi.org/10.1038/ncomms10601

    Article  CAS  Google Scholar 

  5. Sun HX, Yang BL, Li A (2019) Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake. Chem Eng J 372:65–73. https://doi.org/10.1016/j.cej.2019.04.061

    Article  CAS  Google Scholar 

  6. Xu Y, Chen X, Wu D, Luo Y, Liu X, Qian Q, Xiao L, Chen Q (2018) Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation. Carbon Lett 25:68–77. https://doi.org/10.5714/CL.2018.25.068

    Article  Google Scholar 

  7. Yang HP, Liu B, Chen YQ, Chen W, Yang Q, Chen HP (2016) Application of biomass pyrolytic polygeneration technology using retort reactors. Bioresour Technol 200:64–71. https://doi.org/10.1016/j.biortech.2015.09.107

    Article  CAS  Google Scholar 

  8. Sun H, La P, Yang RX, Zhu ZQ, Liang WD, Yang BP, Li A, Deng WQ (2017) Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. J Hazard Mater 321:210–217. https://doi.org/10.1016/j.jhazmat.2016.09.015

    Article  CAS  Google Scholar 

  9. Huang X, Liu Y, Liu S, Tan X, Ding Y, Zeng G, Zhou Y, Zhang M, Wang S, Zheng B (2015) Effective removal of Cr (VI) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifunctional roles. Rsc Adv 6:94–104. https://doi.org/10.1039/c5ra22886g

    Article  Google Scholar 

  10. Shaarani FW, Hameed BH (2011) Ammonia–modified activated carbon for the adsorption of 2,4–dichlorophenol. Chem Eng J 169:180–185. https://doi.org/10.1016/j.cej.2011.03.002

    Article  CAS  Google Scholar 

  11. Wang Y, Jiao WB, Wang JT, Liu GF, Cao HL, Lu J (2019) Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics. Bioresource Technol 277:128–135. https://doi.org/10.1016/j.biortech.2019.01.033

    Article  CAS  Google Scholar 

  12. Li N, Ji Z, Chen L, Shen X, Zhang Y, Cheng S, Zhou H (2018) Anchoring of Ag nanoparticles on Fe3O4 modified polydopamine submicrometer spheres with enhanced catalytic activity. Appl Surf Sci 462:1–7. https://doi.org/10.1016/j.apsusc.2018.07.204

    Article  CAS  Google Scholar 

  13. Mrowczynski R (2018) Polydopamine-based multifunctional (nano) materials for cancer therapy. ACS Appl Mater Inter 10:7541–7561. https://doi.org/10.1021/acsami.7b08392

    Article  CAS  Google Scholar 

  14. Deng Z, Shang B, Peng B (2018) Polydopamine based colloidal materials: synthesis and applications. Chem Rec 18:410–432. https://doi.org/10.1002/tcr.201700051

    Article  CAS  Google Scholar 

  15. Kong J, Seyed Shahabadi SI, Lu X (2016) Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications. Nanoscale 8:1770–1788. https://doi.org/10.1039/c5nr06711a

    Article  CAS  Google Scholar 

  16. Liang N, Kitts DD (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:16. https://doi.org/10.3390/nu8010016

    Article  CAS  Google Scholar 

  17. Bao L, Li J, Zha D, Zhang L, Gao P, Yao T, Wu X (2017) Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2 /HO-1 and NF-ĸB pathways. Int Immunopharmacol 54:245–253. https://doi.org/10.1016/j.intimp.2017.11.021

    Article  CAS  Google Scholar 

  18. Marsousi S, Karimi-Sabet J, Moosavian MA, Amini Y (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem Eng J 356:492–505. https://doi.org/10.1016/j.cej.2018.09.030

    Article  CAS  Google Scholar 

  19. Yuan YN, Wang MW, Jia N, Zhai CC, Han YH, Yan HY (2019) Graphene/multi-walled carbon nanotubes as an adsorbent for pipette-tip solid-phase extraction for the determination of 17β-estradiol in milk products. J Chromatogr A 1600:73–79. https://doi.org/10.1016/j.chroma.2019.04.055

    Article  CAS  Google Scholar 

  20. Li P, Ye JF, Zhang Y, Wang ZQ, Ren SJ, Jin YR, Li XW (2019) Magnetic dispersive solid-phase extraction for the determination of three different glycosides in the Kang’ai injection. Microchem J 146:575–581. https://doi.org/10.1016/j.microc.2019.01.037

    Article  CAS  Google Scholar 

  21. Yang J, Dong X, Hu YH, Wang QY, Wang SL, Cao J, Zhang HH (2019) Calixarene and ionic liquid assisted matrix solid-phase dispersion microextraction of organic acids from fruit. J Chromatogr A 1602:150–159. https://doi.org/10.1016/j.chroma.2019.03.055

    Article  CAS  Google Scholar 

  22. Tang W, Row KH (2020) Evaluation of CO2-induced azole-based switchable ionic liquid with hydrophobic/hydrophilic reversible transition as single solvent system for coupling lipid extraction and separation from wet microalgae. Biores Technol 296:122309. https://doi.org/10.1016/j.biortech.2019.122309

    Article  CAS  Google Scholar 

  23. Mpupa A, Mashile GP, Nomngongo PN (2019) Ultrasound-assisted dispersive solid phase nanoextraction of selected personal care products in wastewater followed by their determination using high performance liquid chromatography-diode array detector. J Hazard Mater 370:33–41. https://doi.org/10.1016/j.jhazmat.2018.08.049

    Article  CAS  Google Scholar 

  24. Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93–99. https://doi.org/10.1039/c1jm12742j

    Article  CAS  Google Scholar 

  25. Hu XR, Liu C, Li JS, Luo R, Jiang H, Sun XY, Shen JY, Han WQ, Wang LJ (2017) Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 1520:58–64. https://doi.org/10.1016/j.chroma.2017.09.013

    Article  CAS  Google Scholar 

  26. Liu Y, Dai G, Zhu LJ, Wang SR (2018) Green conversion of microalgae into high performance sponge-like nitrogen-enriched carbon. Chem Electro Chem 6:1–8. https://doi.org/10.1021/acs.langmuir.7b04370

    Article  CAS  Google Scholar 

  27. Oliveira G, Calisto V, Santos SM (2018) Paper pulp-based adsorbents for the removal of pharmaceuticals from wastewater: a novel approach towards diversification. Sci Total Environ 631–632:1018–1028. https://doi.org/10.1016/j.scitotenv.2018.03.072

    Article  CAS  Google Scholar 

  28. Tian J, Deng S, Li D, Shan D, He W, Zhang X, Shi Y (2013) Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application. Biosens Bioelectron 49:466–471. https://doi.org/10.1016/j.bios.2013.06.009

    Article  CAS  Google Scholar 

  29. Ewa Stanisz MK (2016) Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the determination of mercury species. Talanta 161:384–391. https://doi.org/10.1016/j.talanta.2016.08.071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21808173) and Training Project of Innovation Team of Colleges and Universities in Tianjin (TD13-5020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhu.

Ethics declarations

Conflict of interest

All authors can confirm that there are no conflicts of interest pertaining to this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lv, Y. & Zhu, T. Silane coupling agent assisting dopamine-functionalized biomass porous carbons for enhanced adsorption of organic acids: effects of acid–alkali activation on microstructure. Carbon Lett. 31, 29–37 (2021). https://doi.org/10.1007/s42823-020-00146-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00146-w

Keywords

Navigation