Skip to main content
Log in

Study of a melt processable polymer precursor for carbon fiber

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon fibers (CF) are predominantly being manufactured from polyacrylonitrile (PAN) based precursors which require solution spinning utilizing health hazardous organic solvent. This also adds to the cost of production due to the investment for the solvent recovery. Study of melt processable precursors has long been sought as a solution for health and environmental problems associated with the use of hazardous solvent. No use of solvent for spinning will also reduce the cost of manufacturing. Our coworker Deng et al. reported the possibility of using acrylonitrile-co-1-vinylimidazole (AN/VIM) copolymer as melt processable CF precursor. Here we report a successful preparation of carbon fiber from the co-polymer. We successfully demonstrated the preparation of thinner precursor fibers and carbon fibers through our optimization study of melt spinning, annealing, stabilization and carbonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edie DD (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36(4):345–362

    Article  CAS  Google Scholar 

  2. Bhal OP et al (1998) Carbon fibers. In: Donnet JB et al. (eds) Carbon fibers, 3rd edn. Marcel Dekker Inc, New York. pp 1–84

    Google Scholar 

  3. Cantwell WJ, Morton J (1991) The impact resistance of composite materials—a review. Composites 22(5):347–362

    Article  CAS  Google Scholar 

  4. Chand S (2000) Review carbon fibers for composites. J Mater Sci 35(6):1303–1313

    Article  CAS  Google Scholar 

  5. Li W et al (2012) Structural features of polyacrylonitrile-based carbon fibers. J Mater Sci 47(2):919–928

    Article  Google Scholar 

  6. Davidson JA et al (2000) Investigation of molecular orientation in melt-spun high acrylonitrile fibers. Polymer 41(9):3357–3364

    Article  CAS  Google Scholar 

  7. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  8. Sen K, Bahrami SH, Bajaj P (1996) High-performance acrylic fibers. J Macromol Sci C 36(1):1–76

    Article  Google Scholar 

  9. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728

    Article  CAS  Google Scholar 

  10. Azarova MT, Kazakov ME (2011) World production and consumption of carbon fibres. Fibre Chem 42(5):271

    Article  CAS  Google Scholar 

  11. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432

    Article  CAS  Google Scholar 

  12. Salem DR (2001) Structure formation in polymeric fibers. Hanser

  13. Fu Z et al (2014) Structure evolution and mechanism of polyacrylonitrile and related copolymers during the stabilization. J Mater Sci 49(7):2864–2874

    Article  CAS  Google Scholar 

  14. Rangarajan P et al (2002) Effect of comonomers on melt processability of polyacrylonitrile. J Appl Polym Sci 85(1):69–83

    Article  CAS  Google Scholar 

  15. Rangarajan P et al (2002) Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers. Polymer 43(9):2699–2709

    Article  CAS  Google Scholar 

  16. Bhanu VA et al (2002) Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer 43(18):4841–4850

    Article  CAS  Google Scholar 

  17. Bortner MJ et al (2004) Shear rheological properties of acrylic copolymers and terpolymers suitable for potentially melt processable carbon fiber precursors. J Appl Polym Sci 93(6):2856–2865

    Article  CAS  Google Scholar 

  18. Fu Z et al (2014) Effects of an itaconic acid comonomer on the structural evolution and thermal behaviors of polyacrylonitrile used for polyacrylonitrile-based carbon fibers. J Appl Polym Sci. 131:19

    Google Scholar 

  19. Godshall D et al (2003) Incorporation of methyl acrylate in acrylonitrile based copolymers: effects on melting behavior. Polymer 44(15):4221–4228

    Article  CAS  Google Scholar 

  20. Mukundan T et al (2006) A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor. Polymer 47(11):4163–4171

    Article  CAS  Google Scholar 

  21. Naskar AK et al (2005) UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon 43(5):1065–1072

    Article  CAS  Google Scholar 

  22. Paiva MC et al (2003) UV stabilization route for melt-processible PAN-based carbon fibers. Carbon 41(7):1399–1409

    Article  CAS  Google Scholar 

  23. Deng W, Smith JDW (2012) Poly (acrylonitrile-co-1-vinylimidazole): a new carbon fiber precursor: melt processable and thermally crosslinkable carbon fiber precursor. LAP Lambert Academic Publishing, New York

    Google Scholar 

  24. Deng W et al (2011) Poly (acrylonitrile-co-1-vinylimidazole): a new melt processable carbon fiber precursor. Polymer 52(3):622–628

    Article  CAS  Google Scholar 

  25. ASTM C1557-03 (2003) Standard test method for tensile strength and young’s modulus of fibers. ASTM International, West Conshohocken

    Google Scholar 

  26. ASTM D3822-07 (2003) Standard test method for tensile properties of single textile fibers. ASTM International, West Conshohocken

    Google Scholar 

  27. Jain M, Abhiraman AS (1987) Conversion of acrylonitrile-based precursor fibres to carbon fibres. J Mater Sci 22(1):278–300

    Article  CAS  Google Scholar 

  28. Clarke AJ, Bailey JE (1973) Oxidation of acrylic fibres for carbon fibre formation. Nature 243(5403):146–150

    Article  CAS  Google Scholar 

  29. Fitzer E, Müller DJ (1975) The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 13(1):63–69

    Article  CAS  Google Scholar 

  30. Warner S, Peebles L Jr, Uhlmann D (1979) Oxidative stabilization of acrylic fibres. J Mater Sci 14(3):556–564

    Article  CAS  Google Scholar 

  31. Chen JC, Harrison IR (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40(1):25–45

    Article  CAS  Google Scholar 

  32. Gupta AK, Paliwal DK, Bajaj P (1991) Acrylic precursors for carbon fibers. J Macromol Sci C 31(1):1–89

    Google Scholar 

  33. Damodaran S, Desai P, Abhiraman AS (1990) Chemical and physical aspects of the formation of carbon fibres from PAN-based precursors. J Textile Inst 81(4):384–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Korean Institute of Carbon Convergence Technology for generous funding and collaboration in this project. NMR support was provided by the NSF CHE-1126177 Grant. Last not least, the authors also thank Dr. Wenjin Deng and Professor Dennis Smith, Jr. for their introduction of melt-processable polymer science for carbon fiber research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duck Yang.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, S.F., Batchelor, B.L., Jung, M. et al. Study of a melt processable polymer precursor for carbon fiber. Carbon Lett. 29, 605–612 (2019). https://doi.org/10.1007/s42823-019-00059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00059-3

Keywords

Navigation