Skip to main content
Log in

The complex viscosity of polymer carbon nanotubes nanocomposites as a function of networks properties

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Cross model correlates the dynamic complex viscosity of polymer systems to zero complex viscosity, relaxation time and power-law index. However, this model disregards the growth of complex viscosity in nanocomposites containing filler networks, especially at low frequencies. The current paper develops the Cross model for complex viscosity of nanocomposites by yield stress as a function of the strength and density of networks. The predictions of the developed model are compared to the experimental results of fabricated samples containing poly(lactic acid), poly(ethylene oxide) and carbon nanotubes. The model’s parameters are calculated for the prepared samples, and their variations are explained. Additionally, the significances of all parameters on the complex viscosity are justified to approve the developed model. The developed model successfully estimates the complex viscosity, and the model’s parameters reasonably change for the samples. The stress at transition region between Newtonian and power-law behavior and the power-law index directly affects the complex viscosity. Moreover, the strength and density of networks positively control the yield stress and the complex viscosity of nanocomposites. The developed model can help to optimize the parameters controlling the complex viscosity in polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM (2019) Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv (just-accepted)

  2. Naghib SM (2019) Two dimensional functionalized methacrylated graphene oxide nanosheets as simple and inexpensive electrodes for biosensing applications. Micro Nano Lett. https://doi.org/10.1049/mnl.2018.5320

    Google Scholar 

  3. Rostami A, Nazockdast H, Karimi M (2016) Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv 6(55):49747–49759

    Article  Google Scholar 

  4. Javid A, Ahmadian S, Saboury AA, Kalantar SM, Rezaei-Zarchi S (2014) Novel biodegradable heparin-coated nanocomposite system for targeted drug delivery. RSC Adv 4(26):13719–13728

    Article  Google Scholar 

  5. Abdolmaleki A, Mallakpour S, Rostami M (2015) Surface modification of MWCNTs with glucose and their utilization for the production of environmentally friendly nanocomposites using biodegradable poly(amide-imide) based on N-trimellitylimido-S-valine matrix. Polym Adv Technol 26(9):1141–1147

    Article  Google Scholar 

  6. Salahandish R, Ghaffarinejad A, Naghib SM, Niyazi A, Majidzadeh-A K, Janmaleki M et al (2019) Sandwich-structured nanoparticles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule. Sci Rep 9(1):1226

    Article  Google Scholar 

  7. Kalkhoran AHZ, Vahidi O, Naghib SM (2018) A new mathematical approach to predict the actual drug release from hydrogels. Eur J Pharm Sci 111:303–310

    Article  Google Scholar 

  8. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94(10):1646–1655

    Article  Google Scholar 

  9. Novais RM, Simon F, Pötschke P, Villmow T, Covas JA, Paiva MC (2013) Poly(lactic acid) composites with poly(lactic acid)-modified carbon nanotubes. J Polym Sci Part A: Polym Chem 51(17):3740–3750

    Article  Google Scholar 

  10. Nakafuku C, Sakoda M (1993) Melting and crystallization of poly(l-lactic acid) and poly(ethylene oxide) binary mixture. Polym J 25(9):909–917

    Article  Google Scholar 

  11. Agari Y, Sakai K, Kano Y, Nomura R (2007) Preparation and properties of the biodegradable graded blend of poly(l-lactic acid) and poly(ethylene oxide). J Polym Sci Part B: Polym Phys 45(21):2972–2981

    Article  Google Scholar 

  12. Kim KJ, Huh M-Y, Kim W-S, Song J-H, Lee HS, Kim J-Y et al (2018) The effect of carbon nanotube diameter on the electrical, thermal, and mechanical properties of polymer composites. Carbon Lett (Carbon Lett) 26:95–101

    Google Scholar 

  13. Kim H-S, Jung Y, Kim S (2017) Capacitance behaviors of conducting polymer-coated graphene nanosheets composite electrodes containing multi-walled carbon nanotubes as additives. Carbon Lett 23:63–68

    Google Scholar 

  14. Noh YJ, Kim HS, Kim SY (2012) Improved electrical conductivity of a carbon nanotube mat composite prepared by in situ polymerization and compression molding with compression pressure. Carbon Lett 13(4):243–247

    Article  Google Scholar 

  15. Liu J, Jin B, Meng L-Y, Lee K-H (2018) Synthesis of polypyrrole-based nitrogen-containing porous carbon nanotubes for CO2 adsorption. Carbon Lett 28(1):111–115

    Article  Google Scholar 

  16. Huh M, Lee HM, Park YS, Yun SI (2017) Biocomposite membranes based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and multiwall carbon nanotubes for gas separation. Carbon Lett 21:116–121

    Article  Google Scholar 

  17. Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2017) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B Eng 138:122

    Article  Google Scholar 

  18. Zare Y, Rhee KY (2017) Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases. J Colloid Interface Sci 506:283–290

    Article  Google Scholar 

  19. H-x Li, Zare Y, Rhee KY (2018) The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Mater Chem Phys 207:76–83

    Article  Google Scholar 

  20. Zhu J-M, Zare Y, Rhee KY (2018) Analysis of the roles of interphase, waviness and agglomeration of CNT in the electrical conductivity and tensile modulus of polymer/CNT nanocomposites by theoretical approaches. Colloids Surf A 539:29–36

    Article  Google Scholar 

  21. Zare Y, Rhee KY (2017) Development of a model for electrical conductivity of polymer graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind Eng Chem Res 56:9107

    Article  Google Scholar 

  22. Razavi R, Zare Y, Rhee KY (2018) A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions. Colloids Surf A 538:148–154

    Article  Google Scholar 

  23. Zare Y, Rhee KY (2017) Prediction of tensile modulus in polymer nanocomposites containing carbon nanotubes (CNT) above percolation threshold by modification of conventional model. Curr Appl Phys 17(6):873–879

    Article  Google Scholar 

  24. Zare Y, Rhee KY (2017) Dependence of Z parameter for tensile strength of multi-layered interphase in polymer nanocomposites to material and interphase properties. Nanoscale Res Lett 12(1):42

    Article  Google Scholar 

  25. Zare Y, Fasihi M, Rhee KY (2017) Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Appl Clay Sci 143:265–272

    Article  Google Scholar 

  26. Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E et al (2012) Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens Actuators A 179:83–91

    Article  Google Scholar 

  27. Ikawa T, Tabata H, Yoshizawa T, Utaka K, Kubo O, Katayama M (2016) Pressure-sensing properties of single-walled carbon nanotubes covered with a corona-poled piezoelectric polymer. Appl Phys Lett 109(3):033104

    Article  Google Scholar 

  28. Hemmati F, Garmabi H, Modarress H (2014) Compatibilization mechanisms of nanoclays with different surface modifiers in UCST blends: opposing effects on phase miscibility. Polymer 55(25):6623–6633

    Article  Google Scholar 

  29. Hemmati F, Garmabi H, Modarress H (2013) Phase behavior of UCST blends: effects of pristine nanoclay as an effective or ineffective compatibilizer. Express Polym Lett 7(12):996

    Article  Google Scholar 

  30. Zare Y, Rhee KY, Hui D (2017) Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos B Eng 122:41–46

    Article  Google Scholar 

  31. Zare Y, Rhee KY, Park S-J (2017) Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites. Int J Adhes Adhes 79:111–116

    Article  Google Scholar 

  32. Zare Y, Rhee KY (2017) Development of Hashin-Shtrikman model to determine the roles and properties of interphases in clay/CaCO3/PP ternary nanocomposite. Appl Clay Sci 137:176–182

    Article  Google Scholar 

  33. Zare Y, Garmabi H, Rhee KY (2018) Structural and phase separation characterization of poly(lactic acid)/poly(ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos B Eng 144:1–10

    Article  Google Scholar 

  34. Hadaeghnia M, Goharpey F, Khademzadeh Yeganeh J (2019) Characterization and phase-transition behavior of thermoresponsive PVME nanogels in the presence of cellulose nanowhiskers: rheology, morphology, and FTIR studies. Polym Eng Sci 59:899–912

    Article  Google Scholar 

  35. Sanjari Shahrezaei MA, Goharpey F, Khademzadeh Yeganeh J (2018) Effect of selective localization of cellulose nanowhiskers on viscoelastic phase separation. Polym Eng Sci 58(6):928–942

    Article  Google Scholar 

  36. Monemian S, Jafari SH, Khonakdar HA, Goodarzi V, Reuter U, Pötschke P (2013) MWNT-filled PC/ABS blends: correlation of morphology with rheological and electrical response. J Appl Polym Sci 130(2):739–748

    Article  Google Scholar 

  37. Yasuda K (1979) Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  38. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    Google Scholar 

  39. Domínguez J, Oliet M, Alonso M, Rojo E, Rodríguez F (2013) Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin. Ind Crops Prod 42:308–314

    Article  Google Scholar 

  40. Mohamadi M, Garmabi H, Papila M (2017) Conjugated dual-phase transitions in crystalline/crystalline blend of poly(vinylidene fluoride)/poly(ethylene oxide). Polym Bull 74(6):2117–2135

    Article  Google Scholar 

  41. Vlasveld D, De Jong M, Bersee H, Gotsis A, Picken S (2005) The relation between rheological and mechanical properties of PA6 nano-and micro-composites. Polymer 46(23):10279–10289

    Article  Google Scholar 

  42. Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  43. Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5(41):32880–32890

    Article  Google Scholar 

  44. Kim S, Jamalzadeh N, Zare Y, Hui D, Rhee KY (2018) Considering the filler network as a third phase in polymer/CNT nanocomposites to predict the tensile modulus using Hashin–Hansen model. Phys B 541:69–74

    Article  Google Scholar 

  45. Zare Y, Rhee KY (2018) A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition. Compos Part B Eng 155:11

    Article  Google Scholar 

  46. Zare Y, Garmabi H, Rhee KY (2018) Roles of filler dimensions, interphase thickness, waviness, network fraction, and tunneling distance in tunneling conductivity of polymer CNT nanocomposites. Mater Chem Phys 206:243–250

    Article  Google Scholar 

  47. Chen Y, Pan F, Guo Z, Liu B, Zhang J (2015) Stiffness threshold of randomly distributed carbon nanotube networks. J Mech Phys Solids 84:395–423

    Article  Google Scholar 

  48. Khademzadeh Yeganeh J, Goharpey F, Foudazi R (2010) Rheology and morphology of dynamically asymmetric LCST blends: polystyrene/poly(vinyl methyl ether). Macromolecules 43(20):8670–8685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Mišković-Stanković, V. & Rhee, K.Y. The complex viscosity of polymer carbon nanotubes nanocomposites as a function of networks properties. Carbon Lett. 29, 535–545 (2019). https://doi.org/10.1007/s42823-019-00050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00050-y

Keywords

Navigation