Skip to main content
Log in

Properties of waste gneiss powder used to design eco-friendly cement mortar

  • Letters
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

The present work concerns the determination of the geological setting of a metamorphic rock quarry in operation for the production of aggregates and the valorization of the drilling waste as a cement additive. The aim is to identify the parameters that determine the composition of the geomaterial employed, highlight that composition, and investigate its pozzolanic activity. The structural study reveals that major discontinuities are oriented N180°. The minerals identified by microscopy and mineralogical investigations are quartz (Qt), plagioclase (Pl), mica (Mi), muscovite (Mu), orthopyroxene (Px), and biotite (Bt) which are characteristic of gneiss. After that, ten boreholes made for blasting provided the waste gneiss powder needed. The collected samples are homogenized and then used as a partial substitute for cement from 0 to 50% with 10% intervals, for the formulation of mortars. Depending on these percentages’ substitution, the setting time increases from 225 to 285 min, and the water absorption decreases from 6.05 to 2.36% at 28 days of curing. Moreover, the filler effect is underlined at 10% substitution by flexural strength enhancements of 2.22% and 1.89% between 2 and 7 days of curing. At 28 days, the compressive strengths fall from − 3.33 to − 20.00% for 10% and 50% substitution, respectively. The parameters that govern all of these behaviors are mainly the filler effect, the reduction in the amount of cement that increases the w/c ratio, and the size of the gneiss fines and sand used. In general, mechanical results decrease with the percentage of substitution, but the difference compared to the control specimen remains largely below the percentage substituted. The findings of this study set the groundwork for the recovery of dust from gneiss quarries as cementitious addition, as well as the limitations of this recovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data availability

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. J. Piedou, Dépoussiérage en carrière. Mines et Carrières. 78 (1996)

  2. L.K. Gupta, A.K. Vyas, Impact on mechanical properties of cement sand mortar containing waste granite powder. Constr. Build. Mater. 191, 155–164 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.203

    Article  Google Scholar 

  3. L. Cui, P. Chen, L. Wang, Y. Xu, H. Wang, Reutilizing waste iron tailing powders as filler in mortar to realize cement reduction and strength enhancement. Materials 15(2), 541 (2022). https://doi.org/10.3390/ma15020541

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. L.Y. Tchedele, N.L.L. Mambou, S.L.V.E. Kamga, A.B. Tchamba, I. Ngounouno, A.T. Bier, Mechanical and microstructutral properties of Cameroonian CPJ NC CEM II/B-P 42.5R cement substitution by glass powder in the cement paste and mortar. SN Appl. Sci. 2, 1368 (2020). https://doi.org/10.1007/s42452-020-3152-y

    Article  CAS  Google Scholar 

  5. R.B.C. Sales, F.A. Sales, E.P. Figueiredo, W.J. dos Santos, N.D.S. Mohallem, M.T.P. Aguilar, Durability of mortar made with fine glass powdered particles. Adv. Mater. Sci. Eng. 2017, 1–9 (2017). https://doi.org/10.1155/2017/3143642

    Article  CAS  Google Scholar 

  6. M. Dobiszewska, W. Pichór, P. Szołdra, Effect of basalt powder addition on properties of mortar. MATEC Web Conf. 262, 06002 (2019). https://doi.org/10.1051/matecconf/201926206002

    Article  CAS  Google Scholar 

  7. S. Unčík, V. Kmecová, The effect of basalt powder on the properties of cement composites. Procedia Eng. 65, 51–56 (2013). https://doi.org/10.1016/j.proeng.2013.09.010

    Article  CAS  Google Scholar 

  8. K.L. Jain, G. Sancheti, L.K. Gupta, Durability performance of waste granite and glass powder added concrete. Constr. Build. Mater. 252, 119075 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119075

    Article  CAS  Google Scholar 

  9. C. Ramadji, A. Messan, E. Prud’Homme, Influence of granite powder on physico-mechanical and durability properties of mortar. Materials 13(23), 5406 (2020). https://doi.org/10.3390/ma13235406

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Lezzerini, L. Luti, A. Aquino, G. Gallello, S. Pagnotta, Effect of marble waste powder as a binder replacement on the mechanical resistance of cement mortars. Appl. Sci. 12(9), 4481 (2022). https://doi.org/10.3390/app12094481

    Article  CAS  Google Scholar 

  11. S.K. Amin, M.E. Allam, G.L. Garas, H. Ezz, A study of the chemical effect of marble and granite slurry on green mortar compressive strength. Bull. Natl. Res. Centre 44(1), 19 (2020). https://doi.org/10.1186/s42269-020-0274-8

    Article  Google Scholar 

  12. M.S. Nasr, A.A. Shubbar, Z.A.-A.R. Abed, M.S. Ibrahim, Properties of eco-friendly cement mortar contained recycled materials from different sources. J. Build. Eng. 31, 101444 (2020). https://doi.org/10.1016/j.jobe.2020.101444

    Article  Google Scholar 

  13. O.M. Omar, G.D. Abd Elhameed, M.A. Sherif, H.A. Mohamadien, Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties. HBRC J. 8(3), 193–203 (2012). https://doi.org/10.1016/j.hbrcj.2012.10.005

    Article  Google Scholar 

  14. P. Hewlett, M. Liska (eds.), Lea’s chemistry of cement and concrete (Butterworth-Heinemann, 2019)

    Google Scholar 

  15. C.M. Martinez, I.S. del Bosque, G. Medina, M. Frías, M.S. de Rojas, Fillers and additions from industrial waste for recycled aggregate concrete, in The structural integrity of recycled aggregate concrete produced with fillers and pozzolans. (Woodhead Publishing, 2021), pp.105–143

    Google Scholar 

  16. B. Holland, P. Alapati, K.E. Kurtis, L. Kahn, Effect of different concrete materials on the corrosion of the embedded reinforcing steel, in Corrosion of steel in concrete structures. (Elsevier, 2023), pp.199–218

    Chapter  Google Scholar 

  17. G. Habert, Assessing the environmental impact of conventional and ‘green’ cement production, in Eco-efficient construction and building materials. (Woodhead Publishing, 2014), pp.199–238

    Chapter  Google Scholar 

  18. F.L. Gayarre, I.L. Boadella, J.S. Gonzalez, C. Lopez-Colina, M.S. Lopez, F. Stochino, Waste for aggregates in ultrahigh performance concrete (UHPC), in Waste and byproducts in cement-based materials. (Woodhead Publishing, 2021), pp.29–51

    Chapter  Google Scholar 

  19. P. Maurizot, A. Abessolo, A. Feybesse, V. Johan, P. Lecomte, Étude et prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978–1985. Bureau de Recherches Geologiques et Minieres, BRGM 85 CMR 066, Orleans, France, 274 (1986)

  20. J.P. Nzenti, T. Njanko, E.L.T. Njiosseu, F.M. Thoua, Les domaines granulitiques de la chaine panafricaine nord-equatoriale au Cameroun. In: J.P. Vicat, P. Bilong (Editeurs) Dans : Géologie et environnement au Cameroun. Collection GEOCAM 1, Presses Universitaires de Yaounde I, Yaounde, Cameroun, pp 255–264 (1998)

  21. S. Owona, O.J. Mvondo, J. Essono, B. Tjomb, M.M. Enama, Geomorphologie et cartographie de deux facies paraderives et un orthoderive de la region de Yaounde. J. STD 10, 81–91 (2003)

    Google Scholar 

  22. H. Mvondo, S. Owona, O.J. Mvondo, J. Essono, Tectonic evolution of the Yaounde segment of the neoproterozoic central orogenic belt in southern Cameroun. Can. J. Earth Sci. 44, 433–444 (2007)

    Article  ADS  Google Scholar 

  23. NF EN 197-1, Ciment—Partie 1 : composition, spécifications et critères de conformité des ciments courants. AFNOR (2012)

  24. EN 196-1, Methods of testing cement. Determination of strength, CEN (2005)

  25. NF EN 933-1, Essais pour déterminer les caractéristiques géométriques des granulats—Partie 1: détermination de la granularité—analyse granulométrique par tamisage. AFNOR (2012)

  26. NF EN 933-2, Essais pour déterminer les caractéristiques géométriques des granulats—Partie 2: détermination de la granularité—tamis de contrôle, dime nsions nominales des ouvertures. AFNOR (2020)

  27. NF EN 196-6, Méthodes d’essai des ciments—determination de la masse volumique apparente. AFNOR (2018)

  28. NF EN 196-6, Méthodes d’essai des ciments—determination de la masse volumique absolue. AFNOR (2018)

  29. NF EN 196-6, Méthodes d’essai des ciments—determination de la finesse. AFNOR (2018)

  30. J. Newman, S.B. Choo, Advanced concrete technology, constituent materials (Elsevier, Burlington, 2003)

    Google Scholar 

  31. R.H. Bogue, The chemistry of Portland cement. LWW 79(4), 322 (1955)

    Google Scholar 

  32. NF EN 196-3, Méthodes d’essai des ciments—partie 3: détermination du temps de prise et de la stabilité. AFNOR (2017)

  33. ASTM C642-13, Standard test method for density, absorption, and voids in hardened concrete. ASTM International, West 433Conshohocken, USA (2013)

  34. N.L.L. Mambou, J. Ndop, B. Ndjaka, Investigations of thermal damage on the physical and mechanical properties of gneiss rock specimen. J Powder Metall Min 6(3), 1–6 (2017)

    Google Scholar 

  35. P.D. Ndjigui, M.F.B. Badinane, B. Nyeck, H.P.K. Nandjip, P. Bilong, Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaoundé, South Cameroon. J. Afr. Earth Sc. 79, 125–142 (2013)

    Article  ADS  CAS  Google Scholar 

  36. M.G.M. Mboudou, O. Sebastien, N.N. Moussa, S. Cyrille, B.A. Christian, F. Guilliano, Petrology and feldspar chemistry of the Penja-Manjo pegmatites in the Pan-African orogenic belt of Cameroon: economic implication. Arab. J. Geosci. 15(7), 570 (2022)

    Article  Google Scholar 

  37. B.A. Kamgang Tchuifong, T.K. Jules, F.E. Martial, A.M. Ludovic, E.A. Julios, S.B. Robinson, O. Safianou, K. Maurice, Geological mapping and structural interpretation of the Dschang-Santchou-escarpment (West, Cameroon), using Landsat 8 OLI/TIRS sensors/SRTM and field observations. Geol. J. 58(3), 1111–1130 (2023)

    Article  ADS  Google Scholar 

  38. B. Nyeck, R.V. Ngimbous, P.D. Ndjigui, Petrology of saprolite developed on gneisses in the Matomb region, south Cameroon. J. Afr. Earth Sc. 150, 107–122 (2019)

    Article  ADS  CAS  Google Scholar 

  39. C. Fuanya, A.T. Bolarinwa, B. Kankeu, R.F. Yongue, E.T. Tangko, F.Y. Nkepguep, Geochemical characteristics and petrogenesis of basic rocks in the Ako’ozam–Njabilobe area, Southwestern Cameroon: implications for Au genesis. SN Appl. Sci. 1, 1–12 (2019)

    Article  Google Scholar 

  40. J.P. Nzenti, P. Barbey, J. Macaudiere, D. Soba, Origin and evolution of the late precambrian high grade Yaounde Gneisses (Cameroon). Precambr. Res. 38(2), 91–109 (1988). https://doi.org/10.1016/0301-9268(88)90086-1

    Article  ADS  CAS  Google Scholar 

  41. NF EN 12620, Granulats pour béton, AFNOR (2008)

  42. L.L. Duna, N.G.A. Nguimeya, A.B. Tchamba, N. Billong, E. Kamseu, E. Qoku, T.S. Alomayri, T.A. Bier, Engineering and mineralogical properties of Portland cement used for building and road construction in Cameroon. Int. J. Pavement Res. Technol. 15(4), 821–834 (2022)

    Article  Google Scholar 

  43. N.L.L. Mambou, G.G.M. Tchapga, J. Ndop, M.C. Fofe, J.M.B. Ndjaka, A Comparative study of concrete strength using metamorphic, igneous, and sedimentary rocks (crushed gneiss, crushed basalt, alluvial sand) as fine aggregate. J. Architect. Eng. Technol. 6(1), 1–6 (2017)

    Google Scholar 

  44. N.L.L. Mambou, M.C.D. Fotseu, E. Kamseu, Valorization of wood ashes as partial replacement of Portland cement: mechanical performance and durability. Eur. J. Sci. Res. 151(4), 468–478 (2019)

    Google Scholar 

  45. H. Elaqra, R. Rustom, Effect of using glass powder as cement replacement on rheological and mechanical properties of cement paste. Constr. Build. Mater. 179, 326–335 (2018)

    Article  CAS  Google Scholar 

  46. S.P. Dunuweera, R.M.G. Rajapakse, Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/4158682

    Article  Google Scholar 

  47. K.L.V.E. Samen, R.N. Yanou, C.K.M. Fonzeu, L.A.R. Kamgue, A.B. Tchamba, G.G.M. Tchapga, L. Yang, B. Mempouo, Engineering properties of soda-lime glass powder on Portland cement CEM IV-B-L mortar. J. Build. Pathol. Rehabilit. 7(27), 15 (2022). https://doi.org/10.1007/s41024-022-00164-3

    Article  Google Scholar 

  48. J.P. Bombled, Rhéologie du béton frais, Publication Technique No 161 (C.E.R.I.L.H, Paris, 1964)

    Google Scholar 

  49. A. Katz, D. Kulisch, Performance of mortars containing recycled fine aggregate from construction and demolition waste. Mater. Struct. 50(4), 199 (2017)

    Article  Google Scholar 

  50. C. Munoz-Ruiperez, A. Rodriguez, S. Gutierrez-Gonzalez, V. Calderon, Lightweight masonry mortars made with expanded clay and recycled aggregates. Constr. Build. Mater. 118, 139–145 (2016)

    Article  Google Scholar 

  51. H.K. Kim, K.A. Ha, H.K. Lee, Internal-curing efficiency of cold-bonded coal bottom ash aggregate for high-strength mortar. Constr. Build. Mater. 126, 1–8 (2016)

    Article  Google Scholar 

  52. Z. Xie, Y. Xi, Use of recycled glass as a raw material in the manufacture of Portland cement. Mater. Struct. 35, 510–515 (2002)

    Article  CAS  Google Scholar 

  53. C.L. Hwang, D.H. Shen, The effects of blast-furnace slag and fly ash on the hydration of Portland cement. Cem. Concr. Res. 21(4), 410–425 (1991)

    Article  CAS  Google Scholar 

  54. L.G. Li, Y.M. Wang, Y.P. Tan, A.K.H. Kwan, L.J. Li, Adding granite dust as paste replacement to improve durability and dimensional stability of mortar. Powder Technol. 333, 269–276 (2018)

    Article  CAS  Google Scholar 

  55. Z.Y. Xiao, W. Xu, Assessment of strength development in cemented coastal silt admixed granite powder. Constr. Build. Mater. 206, 470–482 (2019)

    Article  Google Scholar 

  56. P. Reiterman, R. Jaskulski, W. Kubissa, O. Holčapek, M. Keppert, Assessment of rational design of self-compacting concrete incorporating fly ash and limestone powder in terms of long-term durability. Materials. 13, 2863 (2020). https://doi.org/10.3390/ma13122863

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. G.P. Arulraj, A. Adin, T.S. Kannan, Granite powder concrete. IRACST Eng. Sci. Technol. Int. J. ESTIJ. 3, 193–198 (2013)

    Google Scholar 

  58. V.G. Haach, G. Vasconcelos, P.B. Loureno, Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Constr. Build. Mater. 25, 2980–2987 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.011

    Article  Google Scholar 

  59. P. Lalan, Influence d’une Température de 70 _C sur la Géochimie, la Microstructure et la Diffusion Aux Interfaces Béton/Argile: Expérimentations en Laboratoire, In Situ et Modélisation. (2016)https://www.irsn.fr/FR/Larecherche/Formation_recherche/Theses/Theses-soutenues/PRP-DGE/Pages/2016-Lalan-influence-temperature-70-geochimie-microstructure-di_usion-interfaces-beton-argile.aspx#.X5jeFO0RVPY accessed on 26 Aug 2020

  60. H.K. Choudhary, A.V. Anupama, R. Kumar, M.E. Panzi, S. Matteppanavar, B.N. Sherikar, B. Sahoo, Observation of phase transformations in cement during hydration. Constr. Build. Mater. 101, 122–129 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.027

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Nathalie Fagel (AGES Lab), University of Liege, Belgium, for her assistance in conducting some analyses in her institution. We dedicate this effort to the memory of our colleague Bodang Mikael Moudoh, with whom we had fruitful collaboration throughout our research journey.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

TLY: validation, methodology, writing—review and editing, visualization, original draft. MJF: conceptualization, methodology, investigation, writing—original draft. RME: validation, writing—review and editing, visualization. TDJ: methodology, writing review and editing, original draft. ADS: methodology, investigation, review and editing. ASYR: supervision, methodology, resources. KTJH: supervision, methodology, resources.

Corresponding author

Correspondence to Tchedele Langollo Yannick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yannick, T.L., Fleure, M.J., Eboe, R.M. et al. Properties of waste gneiss powder used to design eco-friendly cement mortar. JMST Adv. 6, 1–21 (2024). https://doi.org/10.1007/s42791-023-00060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-023-00060-y

Keywords

Navigation