Skip to main content
Log in

Physico-chemical, mineralogical characterization, and ceramic properties of clay materials from South Mindif (Far North, Cameroon)

  • Letters
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

Characterization studies of clays are generally carried out to identify possible applications of these materials. This paper describes the physico-chemical, mineralogical, and thermal characterization of residual clays from Mindif commune in Cameroon's Far North Region (Doyang, Mendeo, Mobono, Hoppo, Mindif Center, Tchouake, and Gagadje). Ten samples were taken and studied in the laboratory. The methods used in this work were X-ray diffraction (XRD), X-ray fluorescence (XRF), infrared spectrometry (IR), thermogravimetric analysis (DTA/TG), particle size analysis by sedimentometry, Atterberg limits, and physical and firing properties at 900 °C, 1000 °C, and 1100 °C. It appears that the particle size distribution is dominated by sand (25–74%), clay (10–48%), and silt (6–27%). They mostly correspond to sandy clay soils (blue values: 1.5–5), with low (7–13%) to high (23%) plastic characteristics. Chemical analyses showed high SiO2 (53–75%) and low Al2O3 (6–14%) contents, followed by Fe2O3, CaO, K2O, and MgO. The clay materials are mainly made up of quartz, which is associated with feldspar, illite, smectite, and kaolinite. Between 900 and 1100 °C, the color of the specimens was mainly orange. The characteristics of the bricks are varied: water absorption (6–27%), linear shrinkage (1–10%), and flexural strength (4–17 Mpa). A significant development in the densification of ceramic behavior could be noticed at firing temperatures above 1000 °C. The results presented in this article indicate that these clay materials are suitable for the manufacture of earthenware and ceramic products, with or without addition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. G. Millot. (1964). Géologie des argiles, Masson et Cie éd., Paris, p. 499

  2. S.P.A. Sémondji, C.K. Nelly, A.G. Luc, Caractéristiques minéralogiques et géotecniques préliminaires des argiles de Zogbodomey dans le bassin sédimentaire côtier du Bénin (Afrique de l’Ouest). Afr. J. Sci. Technol. Innov. Dev. 12(3), 327–332 (2020). https://doi.org/10.1080/20421338.2020.1733796

    Article  Google Scholar 

  3. M.B. Mbog, G.F. Ngon Ngon, B. Tassongwa et al., Clay deposits of Ngoma (Douala sedimentary subbasin Cameroon, Central Africa): a provenance study. Arab J Geosci 15, 1122 (2022). https://doi.org/10.1007/s12517-022-10130-5

    Article  Google Scholar 

  4. B.P. Kagonbe, D. Tsozue, A.N. Nzeukou, S. Ngos III., Mineralogical, physico-chemical and ceramic properties of clay materials from Sekande and Gashiga (North, Cameroon) and their suitability in earthenware production. Heliyon 7(7), 1–10 (2021). https://doi.org/10.1016/j.heliyon.2021.e07608

    Article  Google Scholar 

  5. E. Yassine, H. Achraf, R. Ahmed, N. Hicham, A. Ahmed, A. Youssef, M. Ahmed, M. Younes, E.B. Abdeslam, E.K. Faisal, S. Chaouki. (2022). Mineralogical and physico-chemical characterization of bentonite materials from the Oued Zemmour area (Oriental Rif, Nader-Morocco): Valorisation in ceramic field. Ceramica y Vidrio, pp. 1–16

  6. R. Eusebiu, M. Sergio, A.S. Juan, P. Luis, G. Eduardo, J.S. Pedro, Characterization, thermal and ceramic properties of clays from Alhabia (Almeria Spain). Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.05.328

    Article  Google Scholar 

  7. K. Vaclav, K. Martin, T. Anton, C. Robert, Characterization of brick clays suitable for advanced ceramic building elements. AIP Conf. Proc. (2022). https://doi.org/10.1063/5.0081385

    Article  Google Scholar 

  8. B. Lamouri, S.A. Labadi, M. Boukoffa et al., A preliminary mineralogical and physicochemical characterization of the Neogene clays from the Timgad Basin (Massif of Aurès, NE Algeria): potential use in the manufacturing of bricks and ceramic industry. SN Appl. Sci. (2022). https://doi.org/10.1007/s42452-022-05029-5

    Article  Google Scholar 

  9. E. Meriam. (2016). thèse valorisation industrielle et artisanale des argiles du maroc, Université de Liège, pp. 1–202

  10. M.N. Abiba, P. Pascal, F.Y. Rose, N. André, F. Nathalie, Suitability of Foumban Clays (West Cameroon) for production of bricks and tiles. J. Min. Mater. Charact. Eng. 6(2), 244–256 (2018). https://doi.org/10.4236/jmmce.2018.62018

    Article  Google Scholar 

  11. A. Alaza. (2017). valorisation des argiles dans l’industrie cimentaire au BURKINA FASO : étude de cas des carrières kaolinitiques de Sabce, Kamboinse, Tougou, Titao Kandarfa et Titao selogo. Institut International d’Ingénieurie de l’Eau et de l’Environnement, pp. 23–67

  12. M. Nchare, E.O.B. Desire, L. Wang, B. Sarki, Mineralogical and physicochemical characterization of clay in the Sangaré-Paul locality (North Cameroon), in order to assess the potential use in the field of ceramics. Open J. Inorg. Chem. 8, 71–80 (2018). https://doi.org/10.4236/ojic.2018.83006

    Article  Google Scholar 

  13. A. Maged, S.A.A. El-Magd, A.E. Radwan, S. Kharbish, S. Zamzam, Evaluation insight into Abu Zenima clay deposits as a prospective raw material source for ceramics industry: remote sensing and characterization. Sci. Rep. 13(1), 1–16 (2023)

    Article  Google Scholar 

  14. H. Feiglstorfer, F. Ottner, The impact of clay minerals on the building technology of vernacular Earthen Architecture in Eastern Austria. Heritage 5(1), 378–401 (2022). https://doi.org/10.3390/heritage5010022

    Article  Google Scholar 

  15. N.B. Singh, Clays and clay minerals in the construction industry. Minerals 12(3), 1–21 (2022). https://doi.org/10.3390/min12030301

    Article  Google Scholar 

  16. C.P. dos Santos, S.A. de Jesus, Chemical, mineralogical, and rheological characterization of regional clays for potential use in cosmetics and pharmaceutical products. Clays Clays Min. (2021). https://doi.org/10.5772/intechopen.97667

    Article  Google Scholar 

  17. F. Hernot. (2016). l’argile, son utilisation à l’officine, pp. 30–51

  18. G.V. Fatima, V. César, Clay-based pharmaceutical formulations and drug delivery systems. ISRN Pharm. 12(12), 1142 (2020). https://doi.org/10.3390/pharmaceutics12121142

    Article  Google Scholar 

  19. M.J.B. Bike, K.D. Benessoubo, M.C. Eko, T.L.C. Tekoumbo, A. Elimbi, R. Kamga, Adsorption mechanisms of pigments and free fatty acids in th discoloration of shea butter and palm oil by an acid-activated Cameroonian smectite. Sci. Afr. 9, 1–10 (2020). https://doi.org/10.1016/j.sciaf.2020.e00498

    Article  Google Scholar 

  20. M.S.L. Rosa, T. Knoerzer, F.C. Figueirero, J.R. Dos Santos Junior, Clarification of used lubricating oils by application of chemically-modified clays. Cerâmica 66, 130–136 (2020). https://doi.org/10.1590/0366-69132020663782823

    Article  Google Scholar 

  21. N. Aicha, A. El Kassimi, Y. Hicham, E. Fatima-Ezzahraa, E. Mamoune, E. Mohammadine, Adsorption of single and mixed colors by kaolinite clay: experimental research combined with a theoretical examination using DFT. J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2022.134687

    Article  Google Scholar 

  22. N.L.L. Mambou, R.M. Jacques, N.M. Ayiwouo, T.K. Sifeu, S.R.Y. Abende, S. Roukaiyatou, Physicochemical Characterization of mining waste from the Betare-Oya Gold Area (East Cameroon) and an adsorption test by Sabga Smectite (North-West Cameroon). Hindawi 9(12), 1–12 (2020). https://doi.org/10.1155/2020/6293819

    Article  Google Scholar 

  23. S. Zen, Z.E. Fatima, Adsorption de colorants anioniques de tannerie par du kaolin modifié à partir d’une solution aqueuse. Desalin. Water Treat. 57(13), 1–9 (2014). https://doi.org/10.1080/1944394.2014.981218

    Article  Google Scholar 

  24. A.M. Maazou, R. Adamou, M. Konaté, A. Alassane, M. Adel, Valorisation de deux matériaux argileux de la vallée du fleuve Niger dans l’élimination du cuivre des eaux de consommation. J. Soc. Ouest-Afr. Chim 043, 64–75 (2017)

    Google Scholar 

  25. Y. Bentahar. (2016). Caractérisation physico-chimique des argiles marocaines : application à l’adsorption de l’arsenic et des colorants cationiques en solution aqueuse. Autre. COMUE Université Côte d’Azur (2015 - 2019); Université Abdelmalek Essaâdi (Tétouan, Maroc), Français. NNT : 2016AZUR4081ff. tel-01452518. https://tel.archives-ouvertes.fr/tel-01452518

  26. A. Njoya, G.E, Ekodeck, C. Nkoumbou, D. Njopwouo, M.F. Tchoua (2002). Matériau argileux au Cameroun : gisements et exploitation. Actes de la première conférence sur la Valorisation des Matériaux argileux au Cameroun. Yaoundé, pp. 13–30.

  27. F. Soureiyatou, N. Paul-Désiré, A.M. Jean, Mineralogical and Physicochemical Characterization of Ngaye alluvial clays (Northern Cameroon) and assessment of its suitability in ceramic production. J. Asian Ceram. Soc. (2014). https://doi.org/10.1016/j.jascer.2014.10.008

    Article  Google Scholar 

  28. D. Tsozué, A.N. Nzeukou, J.R. Mache, L. Suilabayuy, Mineralogical, Physico-chemical and technological Characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic briks production. J. Build. Eng. 11, 17–24 (2017). https://doi.org/10.1016/j.jobe.2017.03.008

    Article  Google Scholar 

  29. E. Yanné, A.A. Oumarou, B.D. Nde, R. Danwé, Physico-chemical and mineralogical characterization of two clay materials of the Far North Region of Cameroon (Makabaye, Maroua). Adv. Mater. Phys. Chem. 8, 378–386 (2018). https://doi.org/10.4236/ampc.2018.89025

    Article  Google Scholar 

  30. H.Z. Adjia, F. Villieras, R. Kamga, Adsorption capacity and Mineralogical and physico-chemical Characteristics of alluvial clay from Far North Cameroon. Int. J. Eng. Res. Tech. 8(6), 1119–1129 (2019)

    Google Scholar 

  31. J.-C. Dumort. (1961). Monographique géologique du diamaré, pp. 1–30

  32. D. Martin. (1963). Carte pédologique du Nord-Cameroun1/100.000·Feuille KAELE, pp. 25–46

  33. S.A. Albertine, E. Noela, N. Achile, T. Sylvain, R.M. Jacques, N. Mominou, Mineralogical and physicochemical characterization of clayey materials from Meiganga (Adamawa-Cameroon): potential application in traditional ceramic. J. Build. Pathol. Rehab. (2022). https://doi.org/10.1007/s41024-022-00203-z

    Article  Google Scholar 

  34. ASTM D4318 (2000) Méthodes d'essai standard pour la limite de liquidité, la limite de plastique et la plasticité des sols, ASTM International, West Con shohocken, PA 19428 – 2959, États-Unis, 2000

  35. D.M. Moore, R.C. Robert Jr., X-ray difraction and the identifcation and analysis of clay minerals (Oxford University Press, Oxford, 1989)

    Google Scholar 

  36. A. Richer de Forges, C. Feller, M. Jamagne, D. Arrouays, Perdu dans les triangles de textures. Etudes et gestion des Sols 15, 97–111 (2008)

    Google Scholar 

  37. H.G.F. Winkler, Importance de la distribution granulométrique et de la composition minérale des argiles pour la fabrication de produits en argile lourde. Rapports de la Société Allemande de Céramique 31, 337–343 (1954)

    Google Scholar 

  38. I.Y. Bomeni, S.L.W. Armand, N. François, K.K. Véronique, F. Nathalie, Geological and physicochemical study of the alluvial clay of the monoun plain (west cameroon) as raw materials for ceramic product. Clay Sci. 22, 29–37 (2018)

    Google Scholar 

  39. N.A. Nzeukou, D. Tsozué, P.B. Kagonbé, M.A. Balo, D.A. Fankam, S. Ngos III., C. Nkoumou, N. Fagel, Clayey soils from Boulgou (North Cameroon): geotechnical, mineralogical, chemical characteristics and properties of their fired products. SN Appl. Sci. (2021). https://doi.org/10.1007/s42452-021-04541-4

    Article  Google Scholar 

  40. B. Seckou, F. Mactar, A.S. Ndeye, S. Vincent, D. Younouss, Physico-chemical characterization of clay raw materials from the Thicky quarry (Senegal) for the manufacture of earth bricks. J. Sustain. Construct. Mater. Tech. 6(3), 87–94 (2021)

    Article  Google Scholar 

  41. B.K. Ngun, H. Mohamad, S.K. Sulaiman, K. Okada, Z.A. Ahmad, Some ceramic properties of clays from central Cambodia. Appl. Clay Sci. 53(1), 33–41 (2011). https://doi.org/10.1016/j.clay.2011.04.017

    Article  Google Scholar 

  42. J.A. Bain, D.E. Highley, Regional appraisal of clay resources. A challenge to theclay mineralogist, in Proceeding of the IV International Clay Conference. ed. by M.M. Mortland, V.C. Farmer (AIPEA, Oxford, 1970), p.437

    Google Scholar 

  43. B.P. Kagonbé, D. Tsozué, A.N. Nzeukou, S. Ngos III., Mineralogical, geochemical and physico-chemical characterization of clay raw materials from three clay deposits in Northern Cameroon. J. Geosci. Environ. Protect. 9, 86–99 (2021). https://doi.org/10.4236/gep.2021.96005

    Article  Google Scholar 

  44. R.D. Holtz, W.D. Kovacs, An introduction to geotechnical engineering (Prentice Hall, Englewood Cliffs, NJ, 1981), p.733

    Google Scholar 

  45. J.P. Temga, J.P. Nguetnkam, M.A. Balo, S.D. Basga, D.L. Bitom, Morphological, physico chemical, mineralogical and geochemical properties of vertisols used in bricks production in the Logone Valley (Cameroon, Central Africa). Int. Res. J. Geol. Mining 5(2), 20–30 (2015)

    Google Scholar 

  46. M.I. Abdoulkader, I.M.S. Souleymane, H. Bouba, A.T. Amadou, G. Zibo, W. Ibrahim, Caractérisation physico-chimique et minéralogique des argiles de la carrière de Mirriah, région de Zinder, utilisées dans la poterie. Eur. Sci. J. 17(3), 120–132 (2021). https://doi.org/10.19044/esj.2021.v17n3p120

    Article  Google Scholar 

  47. S. Ferrari, A.F. Gualtier, The use of illitic clays in the production of stoneware tile ceramics. Appl. Clay Sci. 32, 73–81 (2005). https://doi.org/10.1016/j.clay.2005.10.001

    Article  Google Scholar 

  48. N. Mominou, M.J. Richard, S.I. Aicha, Physicochemical characterization and valorization of clay from Lobo and Ngoya in Cameroon Central Region. Open J. Inorg. Chem. 9, 23–33 (2019). https://doi.org/10.4236/ojic.2019.93003

    Article  Google Scholar 

  49. T. Camille. (2010). Caractérisation et quantification des minéraux argileux dans les sols expansifs par spectrométrie infrarouge aux échelles du laboratoire et du terrain. Planète et Univers [physics]. Université Paul Sabatier-Toulouse III, pp. 1–80. https://tel.archives-ouvertes.fr/tel-00594021

  50. V.C. Farmer, F. Palmieri, Composants des sols (Springer-Verlag, New York, 1975), p.107

    Google Scholar 

  51. N.A. Nzeukou, Minéraogie, géochimie et propriétés céramiques des argiles alluviales de la Sanaga entre Nanga-Eboko et Ebebda (Région du centre-Cameroun) (Université de Yaoundé I, Cameroun, These de Doctorat Ph.D, 2014), p.18

    Google Scholar 

  52. Dominique WETSHONDO OSOMBA (2012) Caractérisation et valorisation des matériaux argileux de la Province de Kinshasa (RD Congo), p. 225

  53. J.B. Sakia, G. Parthasarathy, Fourier transform infrared spectroscopic characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206–210 (2010)

    Article  Google Scholar 

  54. A.H. Zangué, F. Villiéras, R. Kamga, F. Thomas, Mineralogy and physico-chemical properties of alluvial clays from far-north region of Cameroon: a tool for an environmental problem. Int. J. Water Resourc. Environ. Eng. 5(1), 54–66 (2013). https://doi.org/10.5897/IJWREE12.117

    Article  Google Scholar 

  55. E. Yaboki, J.P. Temga, M.A. Balo, D.S. Basga, A. Boukar, J.P. Nguetnkam, Characterization of lithomorphic Vertisols from Kaélé (Northern Cameroon) and their valorization in bricks production. J. Mater. Environ. Sci. 12, 353–372 (2021)

    Google Scholar 

  56. H. Baccour, M. MedhiouB, F. Jamoussi, T. Mhiri, Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. Mater. J. Process Tech. 209, 2812–2817 (2009)

    Article  Google Scholar 

  57. M.A. Nkalih, F.R. Yongue, A. Njoya, J.R. Mache, P. Pilate, F. Hatert, N. Fagel, Mineralogy and geochemical features of Foumban clay deposits (west Cameroon): genesis and potential applications. Clay Miner. 53, 431–445 (2018). https://doi.org/10.1180/clm.2018.31

    Article  Google Scholar 

  58. Y. Millogo. (2008). Etude géotechnique, chimique et minéralogique de matières premières argileuse et latéritique du Burkina Faso améliorées aux liants hydrauliques : application au génie civil (bâtiment et route). These de Doctorat de l’Université d’Ouagadougou

  59. H. Celik, Technological characterisation and industrial application of two Turkish clays for the ceramic industry. Appl. Clay Sci. 50, 245–254 (2010). https://doi.org/10.1016/j.clay.2010.08.005

    Article  Google Scholar 

  60. C.U. Melo, E. Kamseu, C. Djangang, Effect of fluxes on the fired properties between 950–1050 C of some Cameroonian clays. Tiles Bricks Int. 19, 57–69 (2003)

    Google Scholar 

  61. C. Sadik, El. Amrani, A. Albizane, Influence of chemical and mineralogical nature of clay and manufacturing process on the quality of ceramics tiles. EDP Sci. (2012). https://doi.org/10.1051/matecconf/20120201016

    Article  Google Scholar 

  62. M. Al Hassan, A. Bruand, M. Fabrice, O. Duval. (2013). Etude des propriétés de rétention en eau des sols argileux

  63. L. Massat. (2016). Influence de la chimie sur les propriétés multi-échelles du gonflement d’une bentonite compactée. Autre. Université de Lorraine, Français. NNT : 2016LORR0085ff. tel-01754663, 22–26. https://hal.univ-lorraine.fr/tel-01754663

  64. M. El Ouahabi, L. Daoudi, N. Fagel, Comportement technologique des argiles crétacées et pliocènes du nord du Maroc utilisées dans la fabrication de briques de fred. J. Mater. Environ. Sci. 9(4), 1140–1151 (2016)

    Google Scholar 

  65. J. Sigg, Les produits de terre cuites (SEPTIMA, Paris, 1991)

    Google Scholar 

  66. Y.F. Rose, N. Frankline, N. André, K. Frankline, K.M. Paul, The Ndop plain clayey materials (Bamenda area –NW Cameroon): Mineralogical, geochemical, physical characteristics and properties of their fired products. J. Asian Ceram. Soc. 4(3), 299–308 (2016). https://doi.org/10.1016/j.jascer.2016.05.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyammi Bintou Moctar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moctar, I.B., Yannick, T.L., Albertine, A.ST. et al. Physico-chemical, mineralogical characterization, and ceramic properties of clay materials from South Mindif (Far North, Cameroon). JMST Adv. 5, 13–26 (2023). https://doi.org/10.1007/s42791-023-00047-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-023-00047-9

Keywords

Navigation