Skip to main content
Log in

From macro to micro, evolution of surface structures on cutting tools: a review

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

In modern tool industry, the design and manufacture of cutting tool surface have been highlighted to fulfill the ever-increasing demands of advanced manufacturing, e.g., lean production, intelligent manufacturing and Industry 4.0. Chip-breaker is a triumph of applying the specific macro structure on rake face, not only contributing to chip controlling, but also being capable to reduce cutting force and tool temperature. In recent decade, surface texturing has been emerged on tool surface, indicating that research focus of surface structures on tools is evolving from macroscale to microscale. The present study reviews functions, optimization and manufacture approaches of different scale structures on cutting tools, aiming at providing a global view of related technologies and revealing the possible developing tendency in this field. This paper could greatly facilitate future research and industrial application of tool surface modification, especially for the integrated application in multi-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Kharkevich, P.K. Venuvinod, Basic geometric analysis of 3-D chip forms in metal cutting.: part 1: determining up-curl and side-curl radii. Int. J. Mach. Tools Manuf. 39(5), 751–769 (1999)

    Google Scholar 

  2. I. Etsion, State of the art in laser surface texturing. J. Trib. 127, 761–762 (2005)

    Google Scholar 

  3. X.J. Jiang, D.J. Whitehouse, Technological shifts in surface metrology. CIRP Ann. Manuf. Technol. 61(2), 815–836 (2012)

    Google Scholar 

  4. T. Enomoto, T. Watanabe, Y. Aoki, N. Ohtake, Development of a cutting tool with micro structured surface. Jpn. Trans. Jpn. Soc. Mech. Eng. Ser. C 73(729), 288–293 (2007)

    Google Scholar 

  5. N. Kawasegi, H. Sugimori, H. Morimoto, N. Morita, I. Hori, Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis. Eng. 33(3), 248–254 (2009)

    Google Scholar 

  6. S. Lei, S. Devarajan, Z. Chang, A study of micropool lubricated cutting tool in machining of mild steel. J. Mater. Process. Technol. 209(3), 1612–1620 (2009)

    Google Scholar 

  7. I.S. Jawahir, C.A.V. Luttervelt, Recent developments in chip control research and applications. CIRP Ann. Manuf. Technol. 42(2), 659–693 (1993)

    Google Scholar 

  8. I.S. Jawahir, P.L.B. Oxley, The tool restricted contact effect as a major influencing factor in chip breaking: an experimental analysis. CIRP Ann. Manuf. Technol. 37(1), 121–126 (1988)

    Google Scholar 

  9. R. Mesquita, M.J.M.B. Marques, Effect of chip-breaker geometries on cutting forces. J. Mater. Process. Tech. 31, 317–325 (1992)

    Google Scholar 

  10. J.P. Choi, S.J. Lee, Efficient chip breaker design by predicting the chip breaking performance. Int. J. Adv. Manuf. Technol. 17(7), 489–497 (2001)

    Google Scholar 

  11. J. Shinozuka, T. Obikawa, T. Shirakashi, Chip breaking analysis from the viewpoint of the optimum cutting tool geometry design. J. Mater. Process. Technol. 62(4), 345–351 (1996)

    Google Scholar 

  12. A. Kharkevich, P.K. Venuvinod, Basic geometric analysis of 3-D chip forms in metal cutting.: part 1: determining up-curl and side-curl radii. Int. J. Mach. Tools Manuf 39(6), 965–983 (1999)

    Google Scholar 

  13. S. Shu, K. Cheng, H. Ding, S. Chen, An innovative method to measure the cutting temperature in process by using an internally cooled smart cutting tool. J. Manuf. Sci. Eng. 135(6), 061018 (2013)

    Google Scholar 

  14. X. Sun, R. Bateman, K. Cheng, S.C. Ghani, Design and analysis of an internally cooled smart cutting tool for dry cutting. Proc. I. Mech. Eng. Part B J. Eng. Manuf. 226(4), 585–591 (2011)

    Google Scholar 

  15. Z. Wu, Y. Yang, C. Su, X. Cai, C. Luo, Development and prospect of cooling technology for dry cutting tools. Int. J. Adv. Manuf. Technol. 88(5–8), 1567–1577 (2017)

    Google Scholar 

  16. N. Fang, Influence of the geometrical parameters of the chip groove on chip breaking performance using new-style chip formers. J. Mater. Process. Technol. 74(1–3), 268–275 (1988)

    Google Scholar 

  17. O. Gonzalo, I. Quintana, J. Etxarri, FEM based design of a chip breaker for the machining with PCD tools. Adv. Mater. Res. 223, 133–141 (2011)

    Google Scholar 

  18. A.A. Elkaseer, J. Lambarri, J.A. Sarasua, I. Cascon, On the development of a chip breaker in a metal-matrix PCD insert: Fe-based design with ns-laser ablation and machining verification. J. Micro Nano Manuf. (2017). https://doi.org/10.1115/1.4036933

    Google Scholar 

  19. J.A. Degenhardt, R.E. Devor, S.G. Kapoor, Generalized groove-type chip breaker effects on drilling for different drill diameters and flute shapes. Int. J. Mach. Tools Manuf. 45(14), 1588–1597 (2005)

    Google Scholar 

  20. C. Shi, A. Yu, J. Wu, W. Niu, Y. He, X. Hong, Study on position of laser cladded chip breaking dot on rake face of HSS turning tool. Int. J. Mach. Tools Manuf. 122, 132–148 (2017)

    Google Scholar 

  21. J.D. Kim, O.B. Kweun, A chip-breaking system for mild steel in turning. Int. J. Mach. Tools Manuf. 37(5), 607–617 (1997)

    Google Scholar 

  22. M. Wu, L. Liu, B. Wang, Y. Cheng, R. Zhang, T. Wang, Research on chip shapes analysis and optimization design of chip-breaker in cutting the cylindrical shell material. Integr. Ferro. 172(1), 117–124 (2016)

    Google Scholar 

  23. R.Y. Kuo, J.J.J. Wang, R.N. Lee, Effect of insert groove geometry on chip breaking performance. J. Mech. 34(1), 67–73 (2018)

    Google Scholar 

  24. H. Gurbuz, A. Kurt, I. Ciftci, U. Seker, The influence of chip breaker geometry on tool stresses in turning. J. Mech. Eng. 57(2), 91–99 (2011)

    Google Scholar 

  25. R.B. Soares, A.M.P.D. Jesus, R.J.L. Neto, B. Chirita, P.A.R. Rosa, A. Reis, Comparison between cemented carbide and PCD tools on machinability of a high silicon aluminum alloy. J. Mater. Eng. Perf. 26(9), 1–20 (2017)

    Google Scholar 

  26. I.S. Jawahir, X.D. Fang, A knowledge-based approach for designing effective grooved chip breakers-2d and 3d chip flow, chip curl and chip breaking. Int. J. Adv. Manuf. Technol. 10(4), 225–239 (1995)

    Google Scholar 

  27. K. Nakayama, M. Ogawa, Basic rules on the form of chip in metal cutting. Ann. CIRP 27(1), 17–21 (1978)

    Google Scholar 

  28. K. Nakayama, M. Arai, Comprehensive chip form classification based on the cutting mechanism. Ann. CIRP 41(1), 71–74 (1992)

    Google Scholar 

  29. K. Nakayama, U. Masaru, T. Kiyoshi, Chip curl in metal-cutting process. J. Jpn. Soc. Precis. Eng. 27(321), 681–688 (1961)

    Google Scholar 

  30. N.H. Cook, P. Jhaveri, N. Nayak, The mechanism of chip curl and its importance in metal cutting. J. Eng. Ind. 85(4), 374 (1963)

    Google Scholar 

  31. N. Fang, I.S. Jawahir, P.L.B. Oxley, A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool. Int. J. Mech. Sci. 43(2), 557–580 (2001)

    MATH  Google Scholar 

  32. T. Shi, S. Ramalingam, Slip-line solution for orthogonal cutting with a chip breaker and flank wear. Int. J. Mech. Sci. 33(9), 689–704 (1991)

    Google Scholar 

  33. T. Shi, S. Ramalingam, Modeling chip formation with grooved tools. Int. J. Mech. Sci. 35(9), 741–756 (1993)

    Google Scholar 

  34. N.S. Das, B.S. Chawla, C.K. Biswas, An analysis of strain in chip breaking using slip-line field theory with adhesion friction at chip/tool interface. J. Mater. Process. Technol. 170(3), 509–515 (2005)

    Google Scholar 

  35. S. Buchkremer, F. Klocke, D. Veselovac, 3D FEM simulation of chip breakage in metal cutting. Int. J. Adv. Manuf. Technol. 82, 645–661 (2016)

    Google Scholar 

  36. M. Lotfi, A.A. Farid, H. Soleimanimehr, The effect of chip breaker geometry on chip shape, bending moment, and cutting force: FE analysis and experimental study. Int. J. Adv. Manuf. Technol. 78, 917–925 (2015)

    Google Scholar 

  37. H.G. Kim, J.H. Sim, H.J. Kweon, Performance evaluation of chip breaker utilizing neural network. J. Mater. Process. Technol. 209(2), 647–656 (2009)

    Google Scholar 

  38. I.S. Jawahir, A survey and future predictions for the use of chip breaking in unmanned systems. Int. J. Adv. Manuf. Technol. 3(4), 87–104 (1988)

    Google Scholar 

  39. D.B. Hamilton, J.A. Walowit, C.M. Allen, A theory of lubrication by micro-irregularities. J. Basic Eng. 88(1), 177–185 (1966)

    Google Scholar 

  40. A. Arslan, H.H. Masjuki, M.A. Kalam, M. Varman, R.A. Mufti, M.H. Mosarof, Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance: a review. C R C Crit. Rev. Solid State Sci. 41(6), 447–481 (2016)

    Google Scholar 

  41. V. Sharma, P.M. Pandey, Recent advances in turning with textured cutting tools: a review. J. Clean. Prod. 137, 701–715 (2016)

    Google Scholar 

  42. E. Shamoto, T. Aoki, B. Sencer, N. Suzuki, R. Hino, T. Koide, Control of chip flow with guide grooves for continuous chip disposal and chip-pulling turning. CIRP Ann. Manuf. Technol. 60(1), 125–128 (2011)

    Google Scholar 

  43. J. Xie, M.J. Luo, J.L. He, X.R. Liu, T.W. Tan, Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int. J. Precis. Eng. Manuf. 13(10), 1845–1852 (2012)

    Google Scholar 

  44. R. Duan, J. Deng, X. Ai, Y. Liu, H. Chen, Experimental assessment of derivative cutting of micro-textured tools in dry cutting of medium carbon steels. Int. J. Adv. Manuf. Technol. 92(9–12), 3531–3540 (2017)

    Google Scholar 

  45. V.A. Godlevski, A.V. Volkov, V.N. Latyshev, L.N. Maurin, A description of the lubricating action of the tribo-active components of cutting fluids. Lubr. Sci. 11(1), 51–62 (1998)

    Google Scholar 

  46. Y. Xing, J. Deng, J. Zhao, G. Zhang, K. Zhang, Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel. Int. J. Refract. Metals Hard. Mater. 43, 46–58 (2014)

    Google Scholar 

  47. Y. Xing, J. Deng, X. Wang, K. Ehmann, J. Cao, Experimental assessment of laser textured cutting tools in dry cutting of aluminum alloys. J. Manuf. Sci. Eng. 138(7), 071006 (2016)

    Google Scholar 

  48. D. Arulkirubakaran, V. Senthilkumar, V. Kumawat, Effect of micro-textured tools on machining of Ti-6Al-4V alloy: an experimental and numerical approach. Int. J. Refract. Met. H. 54, 165–177 (2016)

    Google Scholar 

  49. J. Xie, M.J. Luo, K.K. Wu, L.F. Yang, D.H. Li, Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int. J. Mach. Tools Manuf. 73(1), 25–36 (2013)

    Google Scholar 

  50. T. Obikawa, A. Kamio, H. Takaoka, A. Osada, Micro-texture at the coated tool face for high performance cutting. Int. J. Mach. Tools Manuf. 51(12), 966–972 (2011)

    Google Scholar 

  51. J. Deng, Z. Wu, Y. Lian, T. Qi, J. Cheng, Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. Int. J. Refract. Metals Hard. Mater. 30(1), 164–172 (2012)

    Google Scholar 

  52. P. Koshy, J. Tovey, Performance of electrical discharge textured cutting tools. CIRP Ann. Manuf. Technol. 60(1), 153–156 (2011)

    Google Scholar 

  53. M.C. Shaw, Metal cutting principles (Oxford University Press, Oxford, 1984)

    Google Scholar 

  54. Z. Kang, Y. Fu, J. Ji, L. Tian, Numerical investigation of microtexture cutting tool on hydrodynamic lubrication. J. Tribo. 139(5), 054502 (2017)

    Google Scholar 

  55. H.H. Shahabi, M.M. Ratnam, In-cycle detection of built-up edge BUE from 2-D images of cutting tools using machine vision. Int. J. Adv. Manuf. Technol. 46(9), 1179–1189 (2010)

    Google Scholar 

  56. G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. CIRP Ann. Manuf. Technol. 52(2), 483–507 (2003)

    Google Scholar 

  57. T. Enomoto, T. Sugihara, Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann. Manuf. Technol. 59(1), 597–600 (2010)

    Google Scholar 

  58. T. Sugihara, T. Enomoto, Improvement of anti-adhesive properties of cutting tool by nano/micro textures and its mechanism. Proc. Eng. 19, 100–105 (2011)

    Google Scholar 

  59. T. Sugihara, T. Enomoto, Improving anti-adhesion in aluminum alloy cutting by micro stripe texture. Precis. Eng. 36(2), 229–237 (2012)

    Google Scholar 

  60. T. Sugihara, T. Enomoto, Highly wear-resistant cutting tools with textured surfaces in steel cutting. CIRP Ann. Manuf. Technol. 61(1), 571–574 (2012)

    Google Scholar 

  61. T. Sugihara, T. Enomoto, Crater and flank wear resistance of cutting tools having micro textured surfaces. Precis. Eng. 37(4), 888–896 (2013)

    Google Scholar 

  62. Z. Wu, J. Deng, C. Yang, Y. Xing, J. Zhao, Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 62(9–12), 943–951 (2012)

    Google Scholar 

  63. Z. Fang, T. Obikawa, Cooling performance of micro-texture at the tool flank face under high pressure jet coolant assistance. Precis. Eng. 49, 41–51 (2017)

    Google Scholar 

  64. J. Kümmel, D. Braun, J. Gibmeier, J. Schneider, C. Greiner, V. Schulze, A. Wanner, Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilization. J. Mater. Process. Technol. 215, 62–70 (2015)

    Google Scholar 

  65. R. Sasi, S.K. Subbu, I.A. Palani, Performance of laser surface textured high-speed steel cutting tool in machining of Al7075-T6 aerospace alloy. Surf. Coat. Technol. 313, 337–346 (2017)

    Google Scholar 

  66. T. Sugihara, Y. Nishimoto, T. Enomoto, Development of a novel cubic boron nitride cutting tool with a textured flank face for high-speed machining of inconel 718. Precis. Eng. 48, 75–82 (2017)

    Google Scholar 

  67. Y. Liu, J. Deng, F. Wu, R. Duan, X. Zhang, Y. Hou, Wear resistance of carbide tools with textured flank-face in dry cutting of green alumina ceramics. Wear 372–373, 91–103 (2017)

    Google Scholar 

  68. T.D. Ling, P. Liu, S. Xiong, D. Grzina, J. Cao, Q.J. Wang, Z. Xia, R. Talwar, Surface texturing of drill bits for adhesion reduction and tool life enhancement. Trib. Lett. 52(1), 113–122 (2013)

    Google Scholar 

  69. P. Vamsi Krishna, R.R. Srikant, D. Nageswara Rao, Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int. J. Mach. Tools Manuf. 50(10), 911–916 (2010)

    Google Scholar 

  70. A. Fatima, P.T. Mativenga, Performance of flank face structured cutting tools in machining of AISI/SAE 4140 over a range of cutting speeds. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 3–18 (2014)

    Google Scholar 

  71. J. Zhang, Z. Liu, J. Du, Prediction of cutting temperature distributions on rake face of coated cutting tools. Int. J. Adv. Manuf. Technol. 91, 49–57 (2016)

    Google Scholar 

  72. P. Li, J. Xie, Z. Deng, Characterization of irregularly micro-structured surfaces related to their wetting properties. Appl. Surf. Sci. 335, 29–38 (2015)

    Google Scholar 

  73. J.H. Moon, M. Cho, S.H. Lee, Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces. Int. J. Heat Mass Transf. 97, 308–317 (2016)

    Google Scholar 

  74. N.T. Alagan, T. Beno, A. Wretland, Investigation of modified cutting insert with forced coolant application in machining of alloy 718. Proc. Cirp 42, 481–486 (2016)

    Google Scholar 

  75. B. Grabas, Vibration-assisted laser surface texturing of metals as a passive method for heat transfer enhancement. Exp. Therm. Fluid Sci. 68, 499–508 (2015)

    Google Scholar 

  76. A. Gangopadhyay, S. Jahanmir, Friction and wear characteristics of silicon nitride-graphite and alumina-graphite composites. Trib. Trans. 34, 257–265 (1991)

    Google Scholar 

  77. J.D. Deng, T. Cao, X. Yang, J. Liu, Self-lubrication of sintered ceramic tools with Caf2 additions in dry cutting. Int. J. Mach. Tools Manuf. 46(9), 957–963 (2006)

    Google Scholar 

  78. J. Deng, W. Song, H.Z. Zhang, Design, fabrication and properties of a self-lubricated tool in dry cutting. Int. J. Mach. Tools Manuf. 49(1), 66–72 (2009)

    Google Scholar 

  79. L. Rapoport, A. Moshkovich, V. Perfilyev, I. Lapsker, G. Halperin, Y. Itovich, I. Etsion, Friction and wear of mos 2, films on laser textured steel surfaces. Surf. Coat. Technol. 202(14), 3332–3340 (2008)

    Google Scholar 

  80. V. Sharma, P.M. Pandey, Comparative study of turning of 4340 hardened steel with hybrid textured self-lubricating cutting inserts. Adv. Manuf. Proc. 31(14), 1904–1916 (2015)

    Google Scholar 

  81. V. Sharma, P.M. Pandey, Geometrical design optimization of hybrid textured self-lubricating cutting inserts for turning 4340 hardened steel. Int. J. Adv. Manuf. Technol. 89(5–8), 1575–1589 (2016)

    Google Scholar 

  82. K. Zhang, J. Deng, Z. Ding, X. Guo, L. Sun, Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings. J. Manuf. Proc. 30, 492–501 (2017)

    Google Scholar 

  83. V. Senthilkumar, M.G.H. Prasath, Influence of linear grooved texture on improvement of tribological properties of cutting tool material. Appl. Mech. Mater. 592–594, 1315–1319 (2014)

    Google Scholar 

  84. W. Chang, J. Sun, X. Luo, J.M. Ritchie, C. Mack, Investigation of microstructured milling tool for deferring tool wear. Wear 271, 2433–2437 (2011)

    Google Scholar 

  85. N. Saseendran, G. Lodi. Effect of micro scale textures on drilling performance of carbide tools in dry and wet machining of Ti-6Al-4V, in ASME 2016 International Mechanical Engineering Congress and Exposition, Vol. 2, Adv. Manuf., 2016

  86. Z. Wu, J. Deng, H. Zhang, Y. Lian, J. Zhao, Tribological behavior of textured cemented carbide filled with solid lubricants in dry sliding with titanium alloys. Wear 292–293(29), 135–143 (2012)

    Google Scholar 

  87. N. Takayama, J. Yan, Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser. J. Mater. Process. Technol. 243, 299–311 (2016)

    Google Scholar 

  88. Y. Su, Z. Li, L. Li, J. Wang, H. Gao, G. Wang, Cutting performance of micro-textured polycrystalline diamond tool in dry cutting. J. Manuf. Process. 27, 1–7 (2017)

    Google Scholar 

  89. H. Kiyota, F. Itoigawa, T. Nakamura, Experimental research of micro-textured tool for reduction in cutting force. Key Eng. Mater. 611–612, 1258–1263 (2014)

    Google Scholar 

  90. A. Fatima, P.T. Mativenga, Assessment of tool rake surface structure geometry for enhanced contact phenomena. Int. J. Adv. Manuf. Technol. 69, 771–776 (2013)

    Google Scholar 

  91. T. Obikawa, B. Kani, Micro ball end milling of titanium alloy using a tool with a microstructured rake face. J. Adv. Mech. Des. Syst. 6(7), 1121–1131 (2012)

    Google Scholar 

  92. P.N. Rao. Manufacturing technology metal cutting & machine tool (M). Volume II, 2E (Mcgraw Hill, 2000)

  93. S. Niketh, G.L. Samuel, Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy. J. Clean. Prod. 167, 253–270 (2017)

    Google Scholar 

  94. D.M. Kim, V. Bajpai, H.K. Bo, H.W. Park, Finite element modeling of hard turning process via a micro-textured tool. Int. J. Adv. Manuf. Technol. 78(9–12), 1393–1405 (2015)

    Google Scholar 

  95. A. Olleak, T. Özel, 3D finite element modeling based investigations of micro-textured tool designs in machining titanium alloy Ti-6Al-4V. Procedia Manuf. 10, 536–545 (2017)

    Google Scholar 

  96. J. Ma, N.H. Duong, S. Lei, 3D numerical investigation of the performance of microgroove textured cutting tool in dry machining of ti-6al-4v. Int. J. Adv. Manuf. Technol. 79(5–8), 1313–1323 (2015)

    Google Scholar 

  97. J. Ma, N.H. Duong, S. Chang, Y. Lian, J. Deng, S. Lei, Assessment of microgrooved cutting tool in dry machining of AISI 1045 Steel. ASME. J. Manuf. Sci. Eng. 137(3), 031001 (2015)

    Google Scholar 

  98. J. Ma, X. Ge, C. Qiu, S. Lei, FEM assessment of performance of microhole textured cutting tool in dry machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 84(9–12), 2609–2621 (2016)

    Google Scholar 

  99. J. Ma, N.H. Duong, S. Lei, Numerical investigation of the performance of microbump textured cutting tool in dry machining of AISI 1045 steel. J. Manuf. Process. 19, 194–204 (2015)

    Google Scholar 

  100. Q. Wang, D. Zhu, Virtual texturing: modeling the performance of lubricated contacts of engineered surfaces. ASME J. Tribol. 127, 722–728 (2005)

    Google Scholar 

  101. J. Ji, Y. Fu, Q. Bi, Influence of geometric shapes on the hydrodynamic lubrication of a partially textured slider with micro-grooves. ASME J. Tribol. 136(4), 216–223 (2014)

    Google Scholar 

  102. M. Geiger, S. Roth, W. Becker, Influence of laser-produced microstructures on the tribological behaviour of ceramics. Surf. Coat. Tech. 100–101, 17–22 (1998)

    Google Scholar 

  103. Y. Xing, J. Deng, X. Feng, S. Yu, Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction. Mater. Design 52(24), 234–245 (2013)

    Google Scholar 

  104. B. Saha, W.Q. Toh, E. Liu, S. Beng Tor, D.E. Hardt, J. Lee, A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. J. Micromech. Microeng. 26(1), 013002 (2016)

    Google Scholar 

Download references

Acknowledgements

This work supported by Research Program supported by the Technology Innovation Program (10053248) funded by the Ministry of Trade, industry & Energy (MOTIE), Korea and Technology project (BE2016144) funded by of Science and Finance Departments in Jiangsu province, China. The first author wants to give special acknowledgements to China Scholarship Council (CSC), providing the financial support from July, 2017 to June 2018 (No. 201708320234) and to the prominent research conditions at Purdue campus.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyang Kang or Martin Byung-Guk Jun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Z., Fu, Y., Kim, D.M. et al. From macro to micro, evolution of surface structures on cutting tools: a review. JMST Adv. 1, 89–106 (2019). https://doi.org/10.1007/s42791-019-0009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-019-0009-x

Keywords

Navigation