Skip to main content
Log in

Response of microbial communities to biochar-amended soils: a critical review

  • Review
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance. Studying the response of soil microbial communities to biochar amendments is important for better understanding interactions of biochar with soil, as well as plants. However, the effect of biochar on soil microorganisms has received less attention than its influences on soil physicochemical properties. In this review, the following key questions are discussed: (i) how does biochar affect soil microbial activities, in particular soil carbon (C) mineralization, nutrient cycling, and enzyme activities? (ii) how do microorganisms respond to biochar amendment in contaminated soils? and (iii) what is the role of biochar as a growth promoter for soil microorganisms? Many studies have demonstrated that biochar-soil application enhances the soil microbial biomass with substantial changes in microbial community composition. Biochar amendment changes microbial habitats, directly or indirectly affects microbial metabolic activities, and modifies the soil microbial community in terms of their diversity and abundance. However, chemical properties of biochar, (especially pH and nutrient content), and physical properties such as pore size, pore volume, and specific surface area play significant roles in determining the efficacy of biochar on microbial performance as biochar provides suitable habitats for microorganisms. The mode of action of biochar leading to stimulation of microbial activities is complex and is influenced by the nature of biochar as well as soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelhafez AA, Li J, Abbas MH (2014) Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere 117:66–71

    Article  CAS  Google Scholar 

  • Abujabhah IS, Doyle RB, Bound SA, Bowman JP (2018) Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. J Soils Sediments 18:148–158

    Article  CAS  Google Scholar 

  • Ahmad M, Hashimoto Y, Moon DH, Lee SS, Ok YS (2012) Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. J Hazard Mater 209–210:392–401

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Ahmad M, Ok YS, Kim B-Y, Ahn J-H, Lee YH, Zhang M, Moon DH, Al-Wabel MI, Lee SS (2016) Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J Environ Manage 166:131–139

    Article  CAS  Google Scholar 

  • Al-Wabel MI, Usman ARA, Al-Farraj AS, Ok YS, Abduljabbar A, Al-Faraj AI, Sallam AS (2017) Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environ Geochem Health. https://doi.org/10.1007/s10653-017-9955-0

    Article  Google Scholar 

  • Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410

    Article  CAS  Google Scholar 

  • Ameloot N, Sleutel S, Case SD, Alberti G, McNamara NP, Zavalloni C, Vervisch B, Delle Vedove G, De Neve S (2014) C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biol Biochem 78:195–203

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Awad YM, Lee SS, Ok YS, Kuzyakov Y (2017) Effects of biochar and polyacrylamide on decomposition of soil organic matter and 14 C-labeled alfalfa residues. J Soils Sediments 17:611–620

    Article  CAS  Google Scholar 

  • Awad YM, Ok YS, Abrigata J, Beiyuan J, Beckers F, Tsang DC, Rinklebe J (2018) Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Sci Total Environ 625:147–154

    Article  CAS  Google Scholar 

  • Bandara T, Herath I, Kumarathilaka P, Seneviratne M, Seneviratne G, Rajakaruna N, Vithanage M, Ok YS (2017) Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. J Soils Sediments 17:665–673

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  Google Scholar 

  • Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98

    Article  CAS  Google Scholar 

  • Bolan N (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Brewer CE, Brown RC (2012) 5.18—Biochar. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Oxford, pp 357–384

    Chapter  Google Scholar 

  • Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg 35:1182–1189

    Article  CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Chen J, Li S, Liang C, Xu Q, Li Y, Qin H, Fuhrmann JJ (2017a) Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ 574:24–33

    Article  CAS  Google Scholar 

  • Chen Y, Liu Y, Li Y, Wu Y, Chen Y, Zeng G, Zhang J, Li H (2017b) Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes. Biores Technol 243:347–355

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Mary B, J-b Zhang, Z-c Cai, Chang SX (2013) Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol Biochem 57:848–857

    Article  CAS  Google Scholar 

  • Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson JL (2014a) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404

    Article  CAS  Google Scholar 

  • Chintala R, Schumacher TE, Kumar S, Malo DD, Rice JA, Bleakley B, Chilom G, Clay DE, Julson JL, Papiernik SK (2014b) Molecular characterization of biochars and their influence on microbiological properties of soil. J Hazard Mater 279:244–256

    Article  CAS  Google Scholar 

  • Choppala GK, Bolan N, Megharaj M, Chen Z, Naidu R (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184

    Article  CAS  Google Scholar 

  • Choppala G, Bolan N, Kunhikrishnan A, Bush R (2016) Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144:374–381

    Article  CAS  Google Scholar 

  • Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5:122–131

    Article  CAS  Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    Article  CAS  Google Scholar 

  • Cui L, Yan J, Yang Y, Li L, Quan G, Ding C, Chen T, Fu Q, Chang A (2013) Influence of biochar on microbial activities of heavy metals contaminated paddy fields. BioResources 8:5536–5548

    Google Scholar 

  • Das SK, Varma A (2010) Role of enzymes in maintaining soil health, Soil enzymology. Springer, Hew York, pp 25–42

    Google Scholar 

  • UC Davis Biochar Database (2019) http://biochar.ucdavis.edu/download/. Accessed 02 Nov 2018

  • DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol 77:6295–6300

    Article  CAS  Google Scholar 

  • Demisie W, Liu Z, Zhang M (2014) Effect of biochar on carbon fractions and enzyme activity of red soil. CATENA 121:214–221

    Article  CAS  Google Scholar 

  • Elzobair KA, Stromberger ME, Ippolito JA, Lentz RD (2016) Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 142:145–152

    Article  CAS  Google Scholar 

  • Ezawa T, Yamamoto K, Yoshida S (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci Plant Nutr 48:897–900

    Article  Google Scholar 

  • Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA (2013) Microbial utilisation of biochar-derived carbon. Sci Total Environ 465:288–297

    Article  CAS  Google Scholar 

  • Gascó G, Paz-Ferreiro J, Cely P, Plaza C, Méndez A (2016) Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecol Eng 95:19–24

    Article  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Article  Google Scholar 

  • Gomez J, Denef K, Stewart C, Zheng J, Cotrufo MF (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  CAS  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Hashimoto Y, Matsufuru H, Takaoka M, Tanida H, Sato T (2009) Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an X-ray absorption fine structure investigation. J Environ Qual 38:1420–1428

    Article  CAS  Google Scholar 

  • Hawthorne I, Johnson MS, Jassal RS, Black TA, Grant NJ, Smukler SM (2017) Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J Environ Manage 192:203–214

    Article  CAS  Google Scholar 

  • Herath I, Iqbal M, Al-Wabel MI, Abduljabbar A, Ahmad M, Usman AR, Ok YS, Vithanage M (2017) Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. J Soils Sediments 17:731–740

    Article  CAS  Google Scholar 

  • Hu X-F, Jiang Y, Shu Y, Hu X, Liu L, Luo F (2014) Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J Geochem Explor 147:139–150

    Article  CAS  Google Scholar 

  • Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 174:545–553

    Article  CAS  Google Scholar 

  • Hubert J, Kopecky J, Nesvorna M, Perotti MA, Erban T (2016) Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae). Exp Appl Acarol 70:309–327

    Article  Google Scholar 

  • Huff MD, Kumar S, Lee JW (2014) Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J Environ Manage 146:303–308

    Article  CAS  Google Scholar 

  • Igalavithana AD, Lee S-E, Lee YH, Tsang DC, Rinklebe J, Kwon EE, Ok YS (2017a) Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174:593–603

    Article  CAS  Google Scholar 

  • Igalavithana AD, Park J, Ryu C, Lee YH, Hashimoto Y, Huang L, Kwon EE, Ok YS, Lee SS (2017b) Slow pyrolyzed biochars from crop residues for soil metal (loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere 177:157–166

    Article  CAS  Google Scholar 

  • Irfan M, Hussain Q, Khan KS, Akmal M, Ijaz SS, Hayat R, Khalid A, Azeem M, Rashid M (2019) Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: a 2-year field study. Arab J Geosci 12:95

    Article  CAS  Google Scholar 

  • Jaafar NM, Clode PL, Abbott LK (2014) Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J Integr Agric 13:483–490

    Article  Google Scholar 

  • Jaafar NM, Clode PL, Abbott LK (2015) Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere 25:770–780

    Article  Google Scholar 

  • Jaiswal AK, Frenkel O, Tsechansky L, Elad Y, Graber ER (2018) Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: a possible mechanism involved in soilborne disease suppression. Soil Biol Biochem 121:59–66

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Johnson MS, Webster C, Jassal RS, Hawthorne I, Black TA (2017) Biochar influences on soil CO 2 and CH 4 fluxes in response to wetting and drying cycles for a forest soil. Sci Rep 7:6780

    Article  CAS  Google Scholar 

  • Junna S, Bingchen W, Gang X, Hongbo S (2014) Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland. Ecol Eng 62:43–47

    Article  Google Scholar 

  • Kirby R (2005) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168

    Article  Google Scholar 

  • Kirchman DL (2018) Processes in microbial ecology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res 48(7):577

    Article  CAS  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173–1181

    Article  CAS  Google Scholar 

  • Lammirato C, Miltner A, Kaestner M (2011) Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biol Biochem 43:1936–1942

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006a) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006b) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lehmann J, Kuzyakov Y, Pan G, Ok YS (2015) Biochars and the plant-soil interface. Springer, New York

    Book  Google Scholar 

  • Li Y, Li Y, Chang SX, Yang Y, Fu S, Jiang P, Luo Y, Yang M, Chen Z, Hu S (2018) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol Biochem 122:173–185

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Singh BP, Wang H (2019) The impact of crop residue biochars on silicon and nutrient cycles in croplands. Sci Total Environ 659:673–680

    Article  CAS  Google Scholar 

  • Liu S-J, Liu Y-G, Tan X-F, Zeng G-M, Zhou Y-H, Liu S-B, Yin Z-H, Jiang L-H, Li M-F, Wen J (2018) The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere 208:655–664

    Article  CAS  Google Scholar 

  • Lou K, Rajapaksha AU, Ok YS, Chang SX (2016) Sorption of copper (II) from synthetic oil sands process-affected water (OSPW) by pine sawdust biochars: effects of pyrolysis temperature and steam activation. J Soils Sediments 16:2081–2089

    Article  CAS  Google Scholar 

  • Lu W, Ding W, Zhang J, Li Y, Luo J, Bolan N, Xie Z (2014) Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biol Biochem 76:12–21

    Article  CAS  Google Scholar 

  • Luo S, Wang S, Tian L, Li S, Li X, Shen Y, Tian C (2017) Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl Soil Ecol 117:10–15

    Article  Google Scholar 

  • Luo Y, Dungait JA, Zhao X, Brookes PC, Durenkamp M, Li G, Lin Q (2018) Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil. Land Degrad Dev 29:2183–2188

    Article  Google Scholar 

  • Mandal S, Sarkar B, Bolan N, Ok YS, Naidu R (2017) Enhancement of chromate reduction in soils by surface modified biochar. J Environ Manage 186:277–284

    Article  CAS  Google Scholar 

  • Mao J-D, Johnson R, Lehmann J, Olk D, Neves E, Thompson M, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    Article  CAS  Google Scholar 

  • Masto RE, Kumar S, Rout T, Sarkar P, George J, Ram L (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. CATENA 111:64–71

    Article  CAS  Google Scholar 

  • Meier S, Curaqueo G, Khan N, Bolan N, Cea M, Eugenia GM, Cornejo P, Ok YS, Borie F (2017a) Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J Soils Sediments 17:741–750

    Article  CAS  Google Scholar 

  • Meier S, Curaqueo G, Khan N, Bolan N, Rilling J, Vidal C, Fernández N, Acuña J, González M-E, Cornejo P (2017b) Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. J Soils Sediments 17:1237–1250

    Article  CAS  Google Scholar 

  • Mierzwa-Hersztek M, Gondek K, Baran A (2016) Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl Soil Ecol 105:144–150

    Article  Google Scholar 

  • Miller R, Miller S, Jastrow J, Rivetta C (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162

    Article  CAS  Google Scholar 

  • Mohamed BA, Ellis N, Kim CS, Bi X, Emam AE-R (2016) Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Sci Total Environ 566:387–397

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrolysis 104:485–493

    Article  CAS  Google Scholar 

  • Muhammad N, Dai Z, Xiao K, Meng J, Brookes PC, Liu X, Wang H, Wu J, Xu J (2014) Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 226:270–278

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nie C, Yang X, Niazi NK, Xu X, Wen Y, Rinklebe J, Ok YS, Xu S, Wang H (2018) Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere 200:274–282

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MA (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154:281–288

    Article  CAS  Google Scholar 

  • O’neill B, Grossman J, Tsai M, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35

    Article  Google Scholar 

  • Palansooriya KN, Ok YS, Awad YM, Lee SS, Sung J-K, Koutsospyros A, Moon DH (2019) Impacts of biochar application on upland agriculture: a review. J Environ Manag 234:52–64

    Article  CAS  Google Scholar 

  • Pan F, Li Y, Chapman SJ, Khan S, Yao H (2016) Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci Total Environ 559:15–23

    Article  CAS  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic Press, New York

    Google Scholar 

  • Paz-Ferreiro J, Fu S (2016) Biological indices for soil quality evaluation: perspectives and limitations. Land Degrad Dev 27:14–25

    Article  Google Scholar 

  • Paz-Ferreiro J, Fu S, Méndez A, Gascó G (2014) Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J soils sed 14(3):483–494

    Article  CAS  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Pokharel P, Chang SX (2019) Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils. Sci Total Environ 659:463–472

    Article  CAS  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Quilliam RS, Glanville HC, Wade SC, Jones DL (2013) Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem 65:287–293

    Article  CAS  Google Scholar 

  • Rahman M, Guo Z, Zhang Z, Zhou H, Peng X (2018) Wetting and drying cycles improving aggregation and associated C stabilization differently after straw or biochar incorporated into a Vertisol. Soil Tillage Res 175:28–36

    Article  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  Google Scholar 

  • Rhodes AH, McAllister LE, Chen R, Semple KT (2010) Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere 79:463–469

    Article  CAS  Google Scholar 

  • Rice SA, Wuertz S, Kjelleberg S (2016) Next-generation studies of microbial biofilm communities. Microb Biotechnol 9:677–680

    Article  Google Scholar 

  • Sabale RP, Shabeer TPA, Utture SC, Banerjee K, Oulkar DP, Adsule PG, Deshmukh MB (2015) Kresoxim methyl dissipation kinetics and its residue effect on soil extra-cellular and intra-cellular enzymatic activity in four different soils of India. J Environ Sci Health Part B 50:90–98

    Article  CAS  Google Scholar 

  • Saito M (1990) Charcoal as a micro-habitat for VA mycorrhizal fungi, and its practical implication. Agric Ecosyst Environ 29:341–344

    Article  Google Scholar 

  • Seneviratne M, Weerasundara L, Ok YS, Rinklebe J, Vithanage M (2017) Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. J Environ Manage 186:293–300

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) Chapter 2—a review of biochar and its use and function in soil, advances in agronomy. Academic Press, New York, pp 47–82

    Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Stewart CE, Zheng J, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy 5:153–164

    Article  CAS  Google Scholar 

  • Teutscherova N, Lojka B, Houška J, Masaguer A, Benito M, Vazquez E (2018) Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. Eur J Soil Biol 88:15–26

    Article  CAS  Google Scholar 

  • Thangarajan R, Bolan NS, Kunhikrishnan A, Wijesekara H, Xu Y, Tsang DC, Song H, Ok YS, Hou D (2018) The potential value of biochar in the mitigation of gaseous emission of nitrogen. Sci Total Environ 612:257–268

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Uchimiya M, Ohno T, He Z (2013) Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J Anal Appl Pyrolysis 104:84–94

    Article  CAS  Google Scholar 

  • Wang X, Song D, Liang G, Zhang Q, Ai C, Zhou W (2015) Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl Soil Ecol 96:265–272

    Article  Google Scholar 

  • Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. Gcb Bioenergy 8:512–523

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Wong JTF, Chen Z, Chen X, Ng CWW, Wong MH (2017) Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. J Soils Sediments 17:590–598

    Article  Google Scholar 

  • Wong JTF, Chen X, Deng W, Chai Y, Ng CWW, Wong MH (2019) Effects of biochar on bacterial communities in a newly established landfill cover topsoil. J Environ Manage 236:667–673

    Article  CAS  Google Scholar 

  • Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang H (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Critical Reviews in Environmental Science and Technology, 1–52

  • Xu G, Sun J, Shao H, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60

    Article  Google Scholar 

  • Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Article  CAS  Google Scholar 

  • Xu Y, Seshadri B, Sarkar B, Rumpel C, Sparks D, Bolan NS (2018a) Microbial control of soil carbon turnover, the future of soil carbon. Elsevier, Amsterdam, pp 165–194

    Book  Google Scholar 

  • Xu Y, Seshadri B, Sarkar B, Wang H, Rumpel C, Sparks D, Farrell M, Hall T, Yang X, Bolan N (2018b) Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci Total Environ 621:148–159

    Article  CAS  Google Scholar 

  • Ye J, Joseph SD, Ji M, Nielsen S, Mitchell DR, Donne S, Horvat J, Wang J, Munroe P, Thomas T (2017) Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME J 11:1087

    Article  CAS  Google Scholar 

  • Yu X-Y, Ying G-G, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671

    Article  CAS  Google Scholar 

  • Zhao X, Ouyang W, Hao F, Lin C, Wang F, Han S, Geng X (2013) Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresour Technol 147:338–344

    Article  CAS  Google Scholar 

  • Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ Pollut 227:98–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sik Ok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palansooriya, K.N., Wong, J.T.F., Hashimoto, Y. et al. Response of microbial communities to biochar-amended soils: a critical review. Biochar 1, 3–22 (2019). https://doi.org/10.1007/s42773-019-00009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-019-00009-2

Keywords

Navigation