Skip to main content

Past, present, and future of biochar

Abstract

After entering the twenty-first century, biochar has become a focal point of multidisciplinary research because of its special characteristics, broad application, and promising development prospects. Basic and applied research on the application of biochar in the areas of agriculture, environment, and energy have increased dramatically in the face of food security, environmental pollution, and energy shortage. Although there are some disputes about biochar research, many studies have demonstrated the importance of biochar research from the perspective of scientific advancement and practical application. This paper briefly recalls the history of biochar application; introduces research progress on the basic characteristics of biochar and its associated production technologies; summarizes the research status and existing problems of biochar application in the areas of agriculture, environment, and energy; and analyzes the potential problems and development trends of biochar research in the future.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abdullah H, Wu HW (2009) Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels 23(8):4174–4181

    Article  CAS  Google Scholar 

  2. Al-Wabel MI, Al-Omran A, El-Nagger AH, Nadeem M, Usman AR (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131(3):374–379

    Article  CAS  Google Scholar 

  3. Anton-Herrero R, Garciadelgado C, Alonsoizquierdo M, Garciarodriguez G, Cuevas J, Eymar E (2018) Comparative adsorption of tetracyclines on biochars and stevensite: looking for the most effective adsorbent. Appl Clay Sci 160:162–172

    Article  CAS  Google Scholar 

  4. Atkinsonc J, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  5. Augustenborg CA, Hepp S, Kammann C, Hagan D, Schmidt O, Müller C (2011) Biochar and earthworms effects on soil nitrous oxide and carbon dioxide emissions. J Environ Qual 41:1203–1209

    Article  CAS  Google Scholar 

  6. Bansal RC, Donnet JB, Stoeckli F (1988) Active carbon. Marcel Dekker, New York, p 158

    Google Scholar 

  7. Bazargan A, Rough SL, McKay G (2014) Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy 70:489–497

    Article  CAS  Google Scholar 

  8. Beluri K, Pullagurala VLR, Bojeong K, Sang SL, Sudhir KP, Ki-Hyun K (2018) Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manag 227:146–154

    Article  CAS  Google Scholar 

  9. Benjamin MCF, Stefano MLM, Monica G, Mark S, Johnson SW (2019) Lyon Improving agricultural water use efficiency with biochar—a synthesis of biochar effects on water storage and fluxes across scales. Sci Total Environ 657:853–862

    Article  CAS  Google Scholar 

  10. Bogusz A, Nowak K, Stefaniuk M, Dobrowolski R, Oleszczuk P (2017) Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. J Environ Manag 201:268–276

    Article  CAS  Google Scholar 

  11. Boonanuntanasarn S, Khaomek P, Pitaksong T, Yang LH (2014) The effects of the supplementation of activated charcoal on the growth, health status and fillet composition-odor of Nile tilapia (Oreochromis niloticus) before harvesting. Aquac Int 4:1417–1436

    Article  CAS  Google Scholar 

  12. Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37(3):321–333

    Article  CAS  Google Scholar 

  13. Bruun EW, Müller-Stöver D, Ambus P, Hauggaard-Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62:581–589

    Article  CAS  Google Scholar 

  14. Bruun EW, Ambus P, Egsgaard H, Hauggaardnielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  15. Caguiat JN, Gabriel A, Sally G, Krigstin Donald W, Kirk CQJ (2018) Dependence of supercapacitor performance on macro-structure of monolithic biochar electrodes. Biomass Bioenergy 118:126–132

    Article  CAS  Google Scholar 

  16. Cai L, Xu J, Huang J, Xu H, Xu F, Liang Y, Fu R, Wu D (2017) Structure control of powdery carbon aerogels and their use in high-voltage aqueous supercapacitors. New Carbon Mater 32(06):550–556

    Google Scholar 

  17. Cao XD, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Biores Technol 101:5222–5228

    Article  CAS  Google Scholar 

  18. Cao Y, Pawłowski A (2013) Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour Technol 127:81–91

    Article  CAS  Google Scholar 

  19. Case SDC, McNamara NP, Reay DS, Whitaker J (2012) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of aeration. Soil Biol Biochem 51:125–134

    Article  CAS  Google Scholar 

  20. Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  21. Chan KY, Zwieten LV, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  22. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143

    Article  CAS  Google Scholar 

  23. Chen BL, Chen ZM, Lv SF (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Biores Technol 102(2):716–723

    Article  CAS  Google Scholar 

  24. Chen WF, Zhang WM, Meng J (2013) Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin 46(16):3324–3333

    CAS  Google Scholar 

  25. Chen G, Yao J, Liu J, Yan B, Shan R (2015) Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry. Biores Technol 198:108–114

    Article  CAS  Google Scholar 

  26. Chen TY, Meng J, Xin MJ, Zhang Q, Song YQ, Ren WT, Jiang X (2016) Compaction behavior of biochar from corn stalk. J Shenyang Agric Univ 47(06):728–733

    Google Scholar 

  27. Chen Y, Jiang Z, Wu D, Wang H, Li J, Bi M, Zhang Y (2019) Development of a novel bio-organic fertilizer for the removal of atrazine in soil. J Environ Manag 233:553–560

    Article  CAS  Google Scholar 

  28. Cheng CH, Lehmann J, Thies JE, Burton SD (2008) Stability of black carbon in soils across a climatic gradient’. J Geophys Res 113:G02027

    Google Scholar 

  29. Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson J (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60(3):393–404

    Article  CAS  Google Scholar 

  30. Chiou CT, Cheng JZ, Hung WN, Chen BL, Lin TF (2015) Resolution of adsorption and partition components of organic compounds on black carbons. Environ Sci Technol 49:9116–9123

    Article  CAS  Google Scholar 

  31. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223

    Article  CAS  Google Scholar 

  32. Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock RR, Wells NS (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Biol Biochem 74:852–860

    CAS  Google Scholar 

  33. Cong HB, Zhao LX, Yao ZL, Meng HB, Li M (2015) Research status of biomass carbonization technical equipment and proposals for its development in China. J China Agric Univ 20(02):21–26

    Google Scholar 

  34. Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43(10):2127–2134

    Article  CAS  Google Scholar 

  35. Cui YF, Chen WF (2008) Preliminary study of environment-friendly and biochar-based slow release fertilizer application effect on soybean and peanut. Liaoning Agric Sci 4:41–43

    Google Scholar 

  36. Cui YF, Zeng YQ, Chen WF (2008) Applying effect of pellet active carbon and slow-release fertilizer on maize. Liaoning Agric Sci 3:5–8

    Google Scholar 

  37. Deng LF, Dong G, Cai XX, Tang JH, Yuan HR (2018) Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution. J Fuel Chem Technol 46(01):120–128

    CAS  Google Scholar 

  38. El-Naggar A, Sang SL, Jorg R, Muhammad F, Songe Hocheol, Ajit KS, Andrew RZ, Mahtab A, Sabry MS, Yong SO (2019) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554

    Article  CAS  Google Scholar 

  39. Fan F, Yang Z, Li H, Shi Z, Kan H (2018) Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. R Soc Open Sci 5(10):1–10

    Article  CAS  Google Scholar 

  40. Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  41. Fu PP, Dong J, Li LQ, Zhang YS, Pan GX, Zhang XH, Zheng JF, Zheng JW, Liu XY, Wang JF, Yu XY (2015) Effects of wheat straw bio-charcoal supplement to fodder on growth, slaughter performance and lipid metabolism of broilers. J Chin Cereals Oils Assoc 6:88–93

    Google Scholar 

  42. Gao Z, Zhang Y, Song N, Li X (2017) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5(2):69–88

    Article  CAS  Google Scholar 

  43. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  Google Scholar 

  44. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35(4):219–230

    Article  CAS  Google Scholar 

  45. Gomez-Eyles JL, Ghosh U (2018) Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations. Chemosphere 203:179–187

    Article  CAS  Google Scholar 

  46. Gul S, Whalen JK, Thomas BW, Sachdeva V, Hongyuan D (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206(1):46–59

    Article  CAS  Google Scholar 

  47. Guo J, Zhang J, Jiang F, Zhao S, Su Q, Du G (2015) Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim Acta 176:853–860

    Article  CAS  Google Scholar 

  48. Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5(5):1339–1350

    Article  CAS  Google Scholar 

  49. Han J, Zhang F, Du LB, Chen WF, Meng J (2014) Effects of dietary biochar including vinegar liquid on growth performance and peripheral blood characteristics of piglets. Mod J Anim Husb Vet Med 10:17–20

    Google Scholar 

  50. Han Q, Zhou Z, Chen L (2019) Interface properties study of graphene reinforced carbon fiber and epoxy resin composites. Knitt Ind 01:1–3

    Google Scholar 

  51. Harder B (2006) Smoldered-Earth policy: created by ancient Amazonia natives, fertile, dark soils retain abundant carbon. Sci News 169:133

    Article  Google Scholar 

  52. He L, Fan S, Müller K, Wang H, Che L, Xu S, Song Z, Yuan G, Rinklebe J, Tsang DCW, Ok YS, Bolan N (2018) Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Sci Total Environ 625:987–993

    Article  CAS  Google Scholar 

  53. Huang H, Wang YX, Tang JC, Zhu WY (2014) Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene. Environ Sci 35(5):1884

    CAS  Google Scholar 

  54. Huang P, Ge C, Feng D, Yu H, Luo J, Li J, Strong PJ, Sarmah AK, Bolan NS, Wang H (2018a) Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Sci Total Environ 616–617:1384–1391

    Article  CAS  Google Scholar 

  55. Huang S, Bao J, Shan M, Qin H, Wang H, Yu X, Chen J, Xu Q (2018b) Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere 211:120–127

    Article  CAS  Google Scholar 

  56. Huggins TM, Latorre A, Biffinger JC, Ren ZJ (2016) Biochar based microbial fuel cell for enhanced wastewater treatment and nutrient recovery. Sustainability (Switzerland) 8(2):169

    Article  CAS  Google Scholar 

  57. Jafri N, Wong WY, Doshi V, Yoon LW, Cheah KH (2018) A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf Environ Prot 118:152–166

    Article  CAS  Google Scholar 

  58. Jia J, Li B, Chen Z, Xie Z, Xiong Z (2012) Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Sci Plant Nutr 58(4):503–509

    Article  CAS  Google Scholar 

  59. Jia S, Ying H, Xu W, Sun YJ, Yin H, Sun N (2018) Steam gasification of bio-char for hydrogen-rich syngas. Chem Ind Eng Prog 04:1402–1407

    Google Scholar 

  60. Jiang KM, Cheng CG, Ran M, Lu YG, Wu QL (2018) Preparation of a biochar with a high calorific value from chestnut shells. New Carbon Mater 33(2):183–187

    Article  Google Scholar 

  61. Kacprzak A, Kobyłecki R, Włodarczyk R, Bis Z (2016) Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass. J Power Sources 321:233–240

    Article  CAS  Google Scholar 

  62. Kalinke C, Oliveira PRD, Oliveira GAD, Mangrich AS, Marcolinojunior LH, Bergamini MF (2017) Activated biochar: preparation, characterization and electroanalytical application in an alternative strategy of nickel determination. Anal Chim Acta 983:103–111

    Article  CAS  Google Scholar 

  63. Kambo HS, Dutta A (2015) Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manag 105:746–755

    Article  CAS  Google Scholar 

  64. Kana JR, Teguia A, Tchoumboue J (2010) Effect of dietary plant charcoal from Canarium schweinfurthii Engl and maize cob on aflatoxin B1 toxicosis in broiler chickens. Adv Anim Biosci 4:462–463

    Article  Google Scholar 

  65. Kettunen R, Saarnio S (2013) Biochar can restrict N2O emissions and the risk of nitrogen leaching from an agricultural soil during the freeze–thaw period. Agric Food Sci 22:373–379

    Article  CAS  Google Scholar 

  66. Khan S, Chao C, Waqas M, Arp HPH, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632

    Article  CAS  Google Scholar 

  67. Kichatov B, Korshunov A, Kiverin A (2018) Combustion of the foamed emulsion containing biochar microparticles. Fuel 228:164–174

    Article  CAS  Google Scholar 

  68. Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43

    Article  CAS  Google Scholar 

  69. Kraisornkachit P, Vivanpatarakij S, Powell J, Assabumrungrat S (2018) Experimental study of dual fixed bed biochar-catalytic gasification with simultaneous feed of O2-steam-CO2 for synthesis gas or hydrogen production. Int J Hydrog Energy 43(32):14974–14986

    Article  CAS  Google Scholar 

  70. Lee JW, Kidder M, Evans BR (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974

    Article  CAS  Google Scholar 

  71. Lehmann J (2007a) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  72. Lehmann J (2007b) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  73. Lehmann J (2009) Terra preta Nova—where to from here? In: Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins A (eds) Terra Preta Nova: a tribute to Wim Sombroek. Springer, Berlin, pp 473–486

    Google Scholar 

  74. Lehmann J, Joseph S (2015) Biochar Environ Manag Sci Technol Implement, 2nd edn. Routledge, London

    Book  Google Scholar 

  75. Lehmann J, Weigl D, Peter I, Droppelmann K, Gebauer G, Goldbach H, Zech W (1999) Nutrient interactions of alley-cropped Sorghum bicolor and Acacia saligna in a run off irrigation system in Northern Kenya. Plant Soil 210:249–262

    Article  CAS  Google Scholar 

  76. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  77. Leng LJ, Huang HJ, Li H, Li J, Zhou WG (2019) Biochar stability assessment methods: a review. Sci Total Environ 647:210–222

    Article  CAS  Google Scholar 

  78. Li J (1996) Exploration of Hemudu pottery culture. Jingdezhen’s Ceram 03:36–40

    CAS  Google Scholar 

  79. Li JM, Cao LR, Yuan Y, Wang RP, Wen YZ, Man JY (2018) Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: influencing mechanisms of biochar properties. Bioresour Technol 247:794–803

    Article  CAS  Google Scholar 

  80. Lian F, Huang F, Chen W, Xing BS, Zhu LY (2011) Sorption of apolar and polar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environ Pollut 159(4):850

    Article  CAS  Google Scholar 

  81. Liu S, Wang L, Zheng C, Chen Q, Feng M, Yu Y (2017) Cost-effective asymmetric supercapacitors based on nickel cobalt oxide nanoarrays and biowaste-derived porous carbon electrodes. ACS Sustain Chem Eng 5(11):9903–9913

    Article  CAS  Google Scholar 

  82. Ma Y (2018) Study and research on the pottery block of Hemudu five-leaf grain. World Antiq 05:46–49

    Google Scholar 

  83. Ma C, Feng X, Ding YJ, Zhang XH, Cheng K, Pan GX (2018) Nano-pore distribution of biochar and soil aggregates revealed with the technology of nuclear magnet. Chin J Soil Sci 49(3):582–587

    Google Scholar 

  84. Majewska T, Mikulski D, Siwik T (2009) Silica grit, charcoal and hardwood ash in turkey nutrition. J Elementol 3:489–500

    Google Scholar 

  85. Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration leaching and soil respiration. Glob Chang Biol 16:1366–1379

    Article  Google Scholar 

  86. Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010b) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  87. Marris E (2006) Black is the new green. Nature 442:624–626

    Article  CAS  Google Scholar 

  88. Masulili A, Utomo WH, Syechfani MS (2010) Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in west Kalimantan, Indonesia. J Agric Sci 2(1):39–47

    Google Scholar 

  89. Mekbungwan A, Yamauchi K, Sakaida T (2004) Intestinal villus histological alterations in piglets fed dietary charcoal powder including wood vinegar compound liquid. Anat Histol Embryol 1:11–16

    Article  Google Scholar 

  90. Meng FB, Meng J (2016) Review of biomass carbonization technology. Biomass Chem Eng 50(06):61–66

    Google Scholar 

  91. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45(22):9473–9483

    Article  CAS  Google Scholar 

  92. Mi MX (2018) Study on co-combustion kinetics and pollutant emission characteristics of phoenix tree’s leaves and their biochar with coal. Hefei University of Technology, Hefei

    Google Scholar 

  93. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83–94

    Article  CAS  Google Scholar 

  94. Muhammad S, Lukas VZ, Saqib B, Aneela Y, Avelino N, Muhammad AC, Kashif AK, Umeed A, Muhammad SR, Mirza AM, Ronggui H (2018) A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manag 228:429–440

    Article  CAS  Google Scholar 

  95. Novak JM, Busscher WJ, Laird DL (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112

    Article  CAS  Google Scholar 

  96. Petersen JB, Neves E, Heckenberger MJ (2001) Gift from the past: Terra Preta and prehistoric Amerindian occupation in Amazonia. In: McEwan C, Barreto C, Neves E (eds) Unknown Amazonia. British Museum Press, London, pp 86–105

    Google Scholar 

  97. Qi WR, Cheng XY, Chen ZR, Sun GQ, Zhang WB (2012) Preliminary study on purification effect of bamboo charcoal on aquaculture water. J Zhejiang For Sci Technol 1:16–20

    Google Scholar 

  98. Quaiyum MA, Jahan R, Jahan N, Akhter T, Islam MS (2014) Effects of bamboo charcoal added feed on reduction of ammonia and growth of Pangasius hypophthalmus. J Aquac Res Dev 5:6

    Google Scholar 

  99. Quin PR, Cowie AL, Flavel RJ, Macdonald LM, Morris SG, Singh BP, Young IM, Van Zwieten L (2014) Oil mallee biochar improves soil structural properties—a study with X-ray micro-CT. Agric Ecosyst Environ 191:142–149

    Article  CAS  Google Scholar 

  100. Renner R (2007) Rethinking biochar. Environ Sci Technol 41(17):5932–5933

    Article  CAS  Google Scholar 

  101. Rogovska N, Lair D, Cruse R (2011) Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Biol Biochem 75:871–879

    CAS  Google Scholar 

  102. Ruttanavut J, Yamauchi K, Goto H, Erikawa T (2009) Effects of dietary bamboo charcoal powder including vinegar liquid on growth performance and histological intestinal change in Aigamo ducks. Int J Poult Sci 3:229–236

    Google Scholar 

  103. Sadaka S, Boateng AA (2009) Pyrolysis and bio-oil. Cooperative Extension Service, University of Arkansas, US Department of Agriculture and County Governments Cooperating, Arkansas, pp 1–6

    Google Scholar 

  104. Sagrilo E, Jeffery S, Hoffland E, Kuyper TW (2015) Emission of CO2 from biochar-amended soils and implications for soil organic carbon. Glob Change Biol Bioenergy 7:1294–1304

    Article  CAS  Google Scholar 

  105. Saifullah Saad D, Asif N, Zed R, Ravi N (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335

    Article  CAS  Google Scholar 

  106. Shaheen SM, Niazi NK, Hassan NEE, Bibi I, Wang H, Tsang DCW, Ok YS, Bolan N, Rinklebe J (2019) Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64(4):216–247. https://doi.org/10.1080/09506608.2018.1473096

    Article  CAS  Google Scholar 

  107. Shindo H (1991) Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Sci Plant Nutr 37:651–657

    Article  CAS  Google Scholar 

  108. Shinogia Y, Kanri Y (2003) Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Biores Technol 90:241–247

    Article  CAS  Google Scholar 

  109. Shui Y (2009) Azo-dye adsorption of active carbon, charcoal, modified sludge. Beijing Jiaotong University, Beijing

    Google Scholar 

  110. Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323

    Article  CAS  Google Scholar 

  111. Sombroek W, Kern D, Rodriques T, da S Cravo M, Jarbas TC, Woods W, Glaser B (2002) ‘Terra Preta and Terra Mulata: pre-Columbian Amazon kitchen middens and agricultural fields, their sustainability and their replication. In: Proceedings of the 17th World Congress of Soil Science, Thailand, Paper no 1935

  112. Song J, Huang B, Yuan Q, Liu X, Yang W (2015) Suitable charcoal loadings improving heat-resistance and mechanical properties of epoxy resins composites. Trans Chin Soc Agric Eng (Trans CSAE) 31(14):309–314. https://doi.org/10.11975/j.issn.1002-6819.2015.14.043

    CAS  Article  Google Scholar 

  113. Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303

    Article  CAS  Google Scholar 

  114. Spokas KA, Reicosky DC (2009) Impact of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  115. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  116. Steiner C, Teixeira WG, Lehmann J, Nehls T, Macêdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal, and mineral: fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  117. Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899

    Article  CAS  Google Scholar 

  118. Sui H, Wang X, Chen H (2015) Rheological behavior and steam gasification of bio-slurry. In: Yan J, Shamim T, Chou SK, Li H (eds) Energy Procedia, vol 75, pp 220–225, Elsevier

  119. Suliman W, Harsh JB, Abulail NI, Fortuna A, Dallmeyer I, Garciaperez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84:37–48

    Article  CAS  Google Scholar 

  120. Suliman W, Harsh JB, Fortuna A, Garciaperez M, Abulail NI (2017) Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns. Environ Sci Technol 51:5071–5081

    Article  CAS  Google Scholar 

  121. Sun YN, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L-Y (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  122. Sun X, Han XG, Ping F, Zhang L, Zhang KS, Chen M, Wu WX (2018) Effect of rice straw biochar on nitrous oxide emissions from paddy soils under elevated CO2 and temperature. Sci Total Environ 628:629–1009

    Google Scholar 

  123. Tenenbaum D (2009) Biochar: carbon mitigation from the ground up. Environ Health Perspect 117(2):70–73

    Article  Google Scholar 

  124. Thu M, Koshio S, Ishikawa M, Yokoyama S (2010) Effects of supplementation of dietary bamboo charcoal on growth performance and body composition of juvenile Japanese flounder, Paralichthys olivaceus. J World Aquac Soc 2:255–262

    Article  Google Scholar 

  125. Toptas A, Yildirim Y, Duman G, Yanik J (2015) Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Biores Technol 177:328–336

    Article  CAS  Google Scholar 

  126. Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27(2):205–212

    Article  Google Scholar 

  127. Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1):235–246

    Article  CAS  Google Scholar 

  128. Villalba JJ, Provenza FD, Banner RE (2002) Influence of macronutrients and activated charcoal on intake of sagebrush by sheep and goats. J Anim Sci 8:2099–2109

    Google Scholar 

  129. Wade SR, Nunoura T, Antal MJ (2006) Studies of the flash carbonization process. 2. Violent ignition behavior of pressurized packed beds of biomass: a factorial study. Ind Eng Chem Res 45(10):3512–3519

    Article  CAS  Google Scholar 

  130. Wang H (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Biores Technol 197(9):356–362

    Article  CAS  Google Scholar 

  131. Wang J, Pan X, Liu Y, Zhang S, Xiong Z (2012) Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 360:287–298

    Article  CAS  Google Scholar 

  132. Wang P, Wang G, Zhang J, Lee JY, Li Y, Wang C (2018) Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char. Appl Therm Eng 143:736–745

    Article  CAS  Google Scholar 

  133. Watarai S, Tana S (2005) Eliminating the carriage of Salmonella enterica serovar Enteritidis in domestic fowls by feeding activated charcoal from bark containing wood vinegar liquid (Nekka-Rich). Poult Sci 4:515–521

    Article  Google Scholar 

  134. Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261

    Article  CAS  Google Scholar 

  135. Wijayanta AT, Alam MS, Nakaso K, Fukai J, Kunitomo K, Shimizu M (2014) Combustibility of biochar injected into the raceway of a blast furnace. Fuel Process Technol 117:53–59

    Article  CAS  Google Scholar 

  136. Wu RJ, Chen QS, Cai YY, Lu R, Huang J (2010) Purification of pig farm wastewater using carbon-based treatment Agent- K. Fujian J Agric Sci 4:496–502

    Google Scholar 

  137. Xia SP, Song ZL, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang H (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2018.1564526

    Article  Google Scholar 

  138. Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  139. Yang N, Hu D, Cao B, Chen Y, Li D, Chen D (2017) Preparation of three-dimensional hierarchical porous carbon microspheres for use as a cathode material in lithium–air batteries. New Carbon Mater 32(06):564–571

    Google Scholar 

  140. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    Article  CAS  Google Scholar 

  141. You Z (2012) On the legend of the ancient Mawangdui corpse and the continuation of the key preservation techniques. Hunan Provincial Museum, Hunan, pp 91–96

    Google Scholar 

  142. Young A (1804) The farmer’s calendar. Richard Philips, London

    Google Scholar 

  143. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperature. Biores Technol 102:3488–3497

    Article  CAS  Google Scholar 

  144. Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  145. Zhang A, Bian R, Hussain Q, Li L, Pan G, Zheng J, Zhang X, Zheng J (2013) Change in net global warming potential of rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agric Ecosyst Environ 173:37–45

    Article  Google Scholar 

  146. Zhang J, Zhang J, Wang M, Wu S, Wang H, Niazi NK, Man YB, Christie P, Shan S, Wong MH (2019a) Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. J Soils Sediments. https://doi.org/10.1007/s11368-018-02226-x

    Article  Google Scholar 

  147. Zhang Z, Zhu Z, Shen B, Liu L (2019b) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598

    Article  CAS  Google Scholar 

  148. Zhao MY, Enders A, Lehmann J (2014) Short- and long-term flammability of biochars. Biomass Bioenergy 69:183–191

    Article  CAS  Google Scholar 

  149. Zhao B, Oconnor D, Zhang JL, Peng TY, Shen ZT, Tsang DCW, Hou D (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean 174:977–987

    Article  CAS  Google Scholar 

  150. Zhu XM, Chen BL, Zhu LZ, Xing BS (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115

    Article  CAS  Google Scholar 

  151. Zhu DC, Hu Q, He T, Yang HP, Wang XH, Chen HP (2018) Integrate quality upgrading study of biomass through pyrolysis and densification. Acta Energ Solaris Sin 39(07):1938–1945

    Google Scholar 

  152. Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

  153. Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1/2):235–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Earmarked Fund for Modern Agro-industry Technology Research System, China (Project No. CARS-01-46), the National Key Research and Development Program, China (Project No. 2017YFD0200800), the Innovative Talents Promotion Plan of Ministry of Science and Technology, China (No. 2017RA2211) and the Project of Promoting Talents in Liaoning Province, China (XLYC1802094). We thank Kim McGrouther for her constructive comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenfu Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Meng, J., Han, X. et al. Past, present, and future of biochar. Biochar 1, 75–87 (2019). https://doi.org/10.1007/s42773-019-00008-3

Download citation

Keywords

  • Biochar
  • Agricultural production
  • Soil improvement
  • Pollution abatement
  • New energy