Skip to main content

A scientometric review of biochar research in the past 20 years (1998–2018)

Abstract

Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions. Biochar has attained extensive attention due to its agronomical and environmental benefits in agro-ecosystems. This work adopts the scientometric analysis method to assess the development trends of biochar research based on the literature data retrieved from the Web of Science over the period of 1998–2018. By analysing the basic characteristics of 6934 publications, we found that the number of publications grew rapidly since 2010. Based on a keyword analysis, it is concluded that scholars have had a fundamental recognition of biochar and preliminarily found that biochar application had agronomic and environmental benefits during the period of 1998–2010. The clustering results of keywords in documents published during 2011–2015 showed that the main research hotspots were “biochar production”, “biochar and global climate change”, “soil quality and plant growth”, “organic pollutants removal”, and “heavy metals immobilization”. While in 2016–2018, beside these five main research hotspots, “biochar and composting” topic had also received greater attention, indicating that biochar utilization in organic solid waste composting is the current research hotspot. Moreover, updated reactors (e.g., microwave reactor, fixed-bed reactor, screw-feeding reactor, bubbling fluidized bed reactor, etc.) or technologies (e.g., solar pyrolysis, Thermo-Catalytic Reforming process, liquefaction technology, etc.) applied for efficient energy production and modified biochar for environmental remediation have been extensively studied recently. The findings may help the new researchers to seize the research frontier in the biochar field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdul G, Zhu XY, Chen BL (2017) Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem Eng J 319:9–20. https://doi.org/10.1016/j.cej.2017.02.074

    Article  CAS  Google Scholar 

  2. Abiven S, Hund A, Martinsen V, Cornelissen G (2015) Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia. Plant Soil 395:45–55. https://doi.org/10.1007/s11104-015-2533-2

    Article  CAS  Google Scholar 

  3. Agrafioti E, Kalderis D, Diamadopoulos E (2014a) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314. https://doi.org/10.1016/j.jenvman.2013.12.007

    Article  CAS  Google Scholar 

  4. Agrafioti E, Kalderis D, Diamadopoulos E (2014b) Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J Environ Manag 146:444–450. https://doi.org/10.1016/j.jenvman.2014.07.029

    Article  CAS  Google Scholar 

  5. Aguilar-Chavez A, Diaz-Rojas M, Cardenas-Aquino MD, Dendooven L, Luna-Guido M (2012) Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol Biochem 52:90–95. https://doi.org/10.1016/j.soilbio.2012.04.022

    Article  CAS  Google Scholar 

  6. Agyarko-Mintah E et al (2017a) Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag 61:138–149

    Article  CAS  Google Scholar 

  7. Agyarko-Mintah E, Cowie A, Van Zwieten L, Singh BP, Smillie R, Harden S, Fornasier F (2017b) Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag 61:129–137. https://doi.org/10.1016/j.wasman.2016.12.009

    Article  CAS  Google Scholar 

  8. Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012a) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  CAS  Google Scholar 

  9. Ahmad M, Lee SS, Dou XM, Mohan D, Sung JK, Yang JE, Ok YS (2012b) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  CAS  Google Scholar 

  10. Ahmad M et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  Google Scholar 

  11. Aller D, Rathke S, Laird D, Cruse R, Hatfield J (2017) Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 307:114–121. https://doi.org/10.1016/j.geoderma.2017.08.007

    Article  Google Scholar 

  12. Amoakwah E, Frimpong KA, Arthur E (2017a) Corn cob biochar improves aggregate characteristics of a tropical sandy loam. Soil Sci Soc Am J 81:1054–1063. https://doi.org/10.2136/sssaj2017.04.0112

    Article  CAS  Google Scholar 

  13. Amoakwah E, Frimpong KA, Okae-Anti D, Arthur E (2017b) Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma 307:189–197. https://doi.org/10.1016/j.geoderma.2017.08.025

    Article  CAS  Google Scholar 

  14. Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320. https://doi.org/10.1016/j.pedobi.2011.07.005

    Article  CAS  Google Scholar 

  15. Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Technol 41:8211–8217. https://doi.org/10.1021/es072658j

    Article  CAS  Google Scholar 

  16. Anupam K, Sharma AK, Lal PS, Dutta S, Maity S (2016) Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy 106:743–756. https://doi.org/10.1016/j.energy.2016.03.100

    Article  CAS  Google Scholar 

  17. Aredes S, Klein B, Pawlik M (2013) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 60:71–76. https://doi.org/10.1016/j.jclepro.2012.10.035

    Article  CAS  Google Scholar 

  18. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  19. Awasthi MK et al (2016a) Effect of biochar amendment on greenhouse gas emission and bio-availability of heavy metals during sewage sludge co-composting. J Clean Prod 135:829–835. https://doi.org/10.1016/j.jclepro.2016.07.008

    Article  CAS  Google Scholar 

  20. Awasthi MK et al (2016b) Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresour Technol 219:270–280. https://doi.org/10.1016/j.biortech.2016.07.128

    Article  CAS  Google Scholar 

  21. Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480. https://doi.org/10.1016/j.envpol.2010.10.016

    Article  CAS  Google Scholar 

  22. Betts AR, Chen N, Hamilton JG, Peak D (2013) Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environ Sci Technol 47:14350–14357. https://doi.org/10.1021/es4032198

    Article  CAS  Google Scholar 

  23. Cai WF, Liu RH (2016) Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production. Fuel 182:677–686. https://doi.org/10.1016/j.fuel.2016.06.030

    Article  CAS  Google Scholar 

  24. Cai WF, Dai L, Liu RH (2018a) Catalytic fast pyrolysis of rice husk for bio-oil production. Energy 154:477–487. https://doi.org/10.1016/j.energy.2018.04.157

    Article  CAS  Google Scholar 

  25. Cai WF, Liu RH, He YF, Chai MY, Cai JM (2018b) Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process Technol 171:308–317. https://doi.org/10.1016/j.fuproc.2017.12.001

    Article  CAS  Google Scholar 

  26. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084

    Article  CAS  Google Scholar 

  27. Cao XD, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052

    Article  CAS  Google Scholar 

  28. Cao XD, Ma LN, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/es803092k

    Article  CAS  Google Scholar 

  29. Cely P, Gasco G, Paz-Ferreiro J, Mendez A (2015) Agronomic properties of biochars from different manure wastes. J Anal Appl Pyrol 111:173–182. https://doi.org/10.1016/j.jaap.2014.11.014

    Article  CAS  Google Scholar 

  30. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634. https://doi.org/10.1071/sr07109

    Article  CAS  Google Scholar 

  31. Chen BL, Zhou DD, Zhu LZ (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. https://doi.org/10.1021/es8002684

    Article  CAS  Google Scholar 

  32. Chen BL, Chen ZM, Lv SF (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723. https://doi.org/10.1016/j.biortech.2010.08.067

    Article  CAS  Google Scholar 

  33. Chen ZM, Chen BL, Zhou DD, Chen WY (2012) Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environ Sci Technol 46:12476–12483. https://doi.org/10.1021/es303351e

    Article  CAS  Google Scholar 

  34. Chen CM, Dubin R, Kim MC (2014) Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin Biol Th 14:1295–1317. https://doi.org/10.1517/14712598.2014.920813

    Article  Google Scholar 

  35. Chen D, Guo H, Li RY, Li LQ, Pan GX, Chang A, Joseph S (2016) Low uptake affinity cultivars with biochar to tackle Cd-tainted rice—a field study over four rice seasons in Hunan, China. Sci Total Environ 541:1489–1498. https://doi.org/10.1016/j.scitotenv.2015.10.052

    Article  CAS  Google Scholar 

  36. Chen N, Huang YH, Hou XJ, Ai ZH, Zhang LZ (2017a) Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation. Environ Sci Technol 51:11278–11287. https://doi.org/10.1021/acs.est.7b02740

    Article  CAS  Google Scholar 

  37. Chen W et al (2017b) Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag 61:506–515. https://doi.org/10.1016/j.wasman.2017.01.014

    Article  CAS  Google Scholar 

  38. Chen YD, Ho SH, Wang DW, Wei ZS, Chang JS, Ren NQ (2018) Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresour Technol 247:463–470. https://doi.org/10.1016/j.biortech.2017.09.125

    Article  CAS  Google Scholar 

  39. Cheng HG, Hill PW, Bastami MS, Jones DL (2017) Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy 9:1110–1121. https://doi.org/10.1111/gcbb.12402

    Article  CAS  Google Scholar 

  40. Cornelissen G, Rutherford DW, Arp HPH, Dorsch P, Kelly CN, Rostad CE (2013) Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environ Sci Technol 47:7704–7712. https://doi.org/10.1021/es400676q

    Article  CAS  Google Scholar 

  41. Creamer AE, Gao B, Wang SS (2016) Carbon dioxide capture using various metal oxyhydroxide–biochar composites. Chem Eng J 283:826–832. https://doi.org/10.1016/j.cej.2015.08.037

    Article  CAS  Google Scholar 

  42. Creamer AE, Gao B, Zimmerman A, Harris W (2018) Biomass-facilitated production of activated magnesium oxide nanoparticles with extraordinary CO2 capture capacity. Chem Eng J 334:81–88. https://doi.org/10.1016/j.cej.2017.10.035

    Article  CAS  Google Scholar 

  43. Dai LL et al (2017) Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresour Technol 225:1–8. https://doi.org/10.1016/j.biortech.2016.11.017

    Article  CAS  Google Scholar 

  44. Deng JQ et al (2017) Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interf Sci 506:355–364. https://doi.org/10.1016/j.jcis.2017.07.069

    Article  CAS  Google Scholar 

  45. Deng JM et al (2018a) Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Sep Purif Technol 202:130–137. https://doi.org/10.1016/j.seppur.2018.03.048

    Article  CAS  Google Scholar 

  46. Deng JQ, Li XD, Liu YG, Zeng GM, Liang J, Song B, Wei X (2018b) Alginate-modified biochar derived from Ca(II)-impregnated biomass: excellent anti-interference ability for Pb(II) removal. Ecotox Environ Safe 165:211–218. https://doi.org/10.1016/j.ecoenv.2018.09.013

    Article  CAS  Google Scholar 

  47. Devi P, Saroha AK (2014) Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technol 162:308–315. https://doi.org/10.1016/j.biortech.2014.03.093

    Article  CAS  Google Scholar 

  48. Ding ZH, Hu X, Wan YS, Wang SS, Gao B (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests. J Ind Eng Chem 33:239–245. https://doi.org/10.1016/j.jiec.2015.10.007

    Article  CAS  Google Scholar 

  49. Domene X, Enders A, Hanley K, Lehmann J (2015) Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature. Sci Total Environ 512:552–561. https://doi.org/10.1016/j.scitotenv.2014.12.035

    Article  CAS  Google Scholar 

  50. Dong XL, Ma LNQ, Li YC (2011) Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J Hazard Mater 190:909–915. https://doi.org/10.1016/j.jhazmat.2011.04.008

    Article  CAS  Google Scholar 

  51. Dong HR et al (2017) Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 332:79–86. https://doi.org/10.1016/j.jhazmat.2017.03.002

    Article  CAS  Google Scholar 

  52. Doublet J, Francou C, Poitrenaud M, Houot S (2011) Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresour Technol 102:1298–1307. https://doi.org/10.1016/j.biortech.2010.08.065

    Article  CAS  Google Scholar 

  53. Duan SB, Ma W, Pan YZ, Meng FQ, Yu SG, Wu L (2017) Synthesis of magnetic biochar from iron sludge for the enhancement of Cr(VI) removal from solution. J Taiwan Inst Chem E 80:835–841. https://doi.org/10.1016/j.jtice.2017.07.002

    Article  CAS  Google Scholar 

  54. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. https://doi.org/10.1016/j.biortech.2012.03.022

    Article  CAS  Google Scholar 

  55. Fang GD, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou DM (2014a) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48:1902–1910. https://doi.org/10.1021/es4048126

    Article  CAS  Google Scholar 

  56. Fang Y, Singh B, Singh BP, Krull E (2014b) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71. https://doi.org/10.1111/ejss.12094

    Article  CAS  Google Scholar 

  57. Fang GD, Liu C, Gao J, Dionysiou DD, Zhou DM (2015a) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49:5645–5653. https://doi.org/10.1021/es5061512

    Article  CAS  Google Scholar 

  58. Fang GD, Zhu CY, Dionysiou DD, Gao J, Zhou DM (2015b) Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation. Bioresour Technol 176:210–217. https://doi.org/10.1016/j.biortech.2014.11.032

    Article  CAS  Google Scholar 

  59. Fang GD, Liu C, Wang YJ, Dionysiou DD, Zhou DM (2017) Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Appl Catal B Environ 214:34–45. https://doi.org/10.1016/j.apcatb.2017.05.036

    Article  CAS  Google Scholar 

  60. Frankel ML et al (2016) Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol 216:352–361. https://doi.org/10.1016/j.biortech.2016.05.084

    Article  CAS  Google Scholar 

  61. Freddo A, Cai C, Reid BJ (2012) Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ Pollut 171:18–24. https://doi.org/10.1016/j.envPol.2012.07.009

    Article  CAS  Google Scholar 

  62. Gao NB, Quan C, Liu BL, Li ZY, Wu CF, Li AM (2017) Continuous pyrolysis of sewage sludge in a screw-feeding reactor: products characterization and ecological risk assessment of heavy metals. Energ Fuel 31:5063–5072. https://doi.org/10.1021/acs.energyfuels.6b03112

    Article  CAS  Google Scholar 

  63. Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158. https://doi.org/10.1021/es071361i

    Article  CAS  Google Scholar 

  64. Ghidotti M, Fabbri D, Masek O, Mackay CL, Montalti M, Hornung A (2017) Source and biological response of biochar organic compounds released into water; relationships with bio-oil composition and carbonization degree. Environ Sci Technol 51:6580–6589. https://doi.org/10.1021/acs.est.7b00520

    Article  CAS  Google Scholar 

  65. Griffin DE, Wang DY, Parikh SJ, Scow KM (2017) Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agr Ecosyst Environ 236:21–29. https://doi.org/10.1016/j.agee.2016.11.002

    Article  CAS  Google Scholar 

  66. Gwenzi W, Chaukura N, Mukome FND, Machado S, Nyamasoka B (2015) Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. J Environ Manag 150:250–261. https://doi.org/10.1016/j.jenvman.2014.11.027

    Article  CAS  Google Scholar 

  67. Hagemann N et al (2017) Does soil aging affect the N2O mitigation potential of biochar? A combined microcosm and field study. GCB Bioenergy 9:953–964. https://doi.org/10.1111/gcbb.12390

    Article  CAS  Google Scholar 

  68. Haider G, Steffens D, Moser G, Muller C, Kammann CI (2017) Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a 4-year field study. Agr Ecosyst Environ 237:80–94. https://doi.org/10.1016/j.agee.2016.12.019

    Article  CAS  Google Scholar 

  69. Hale SE et al (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838. https://doi.org/10.1021/es203984k

    Article  CAS  Google Scholar 

  70. Han XG et al (2016a) Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci Rep 1:5–6. https://doi.org/10.1038/srep24731

    CAS  Article  Google Scholar 

  71. Han YT, Cao X, Ouyang X, Sohi SP, Chen JW (2016b) Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(VI) from aqueous solution: effects of production conditions and particle size. Chemosphere 145:336–341. https://doi.org/10.1016/j.chemosphere.2015.11.050

    Article  CAS  Google Scholar 

  72. Hansen V, Hauggaard-Nielsen H, Petersen CT, Mikkelsen TN, Muller-Stover D (2016) E Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Till Res 161:1–9. https://doi.org/10.1016/j.still.2016.03.002

    Article  Google Scholar 

  73. Hardy B, Cornelis JT, Houben D, Leifeld J, Lambert R, Dufey JE (2017) Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium. Eur J Soil Sci 68:80–89. https://doi.org/10.1111/ejss.12395

    Article  CAS  Google Scholar 

  74. Harter J, Weigold P, El-Hadidi M, Huson DH, Kappler A, Behrens S (2016) Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci Total Environ 562:379–390. https://doi.org/10.1016/j.scitotenv.2016.03.220

    Article  CAS  Google Scholar 

  75. Harvey OR, Kuo LJ, Zimmerman AR, Louchouarn P, Amonette JE, Herbert BE (2012) An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ Sci Technol 46:1415–1421. https://doi.org/10.1021/es2040398

    Article  CAS  Google Scholar 

  76. He K, Zhang JB, Wang XT, Zeng YM, Zhang L (2018a) A scientometric review of emerging trends and new developments in agricultural ecological compensation. Environ Sci Pollut R 25:16522–16532. https://doi.org/10.1007/s11356-018-2160-6

    Article  Google Scholar 

  77. He LL, Bi YC, Zhao J, Pittelkow CM, Zhao X, Wang SQ, Xing GX (2018b) Population and community structure shifts of ammonia oxidizers after 4-year successive biochar application to agricultural acidic and alkaline soils. Sci Total Environ 619:1105–1115. https://doi.org/10.1016/j.scitotenv.2017.11.029

    Article  CAS  Google Scholar 

  78. Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92:223–228. https://doi.org/10.1016/j.jenvman.2010.09.008

    Article  CAS  Google Scholar 

  79. Hou D et al (2018) A sustainability assessment framework for agricultural land remediation in China. Land Degrad Dev 29:1005–1018. https://doi.org/10.1002/ldr.2748

    Article  Google Scholar 

  80. Hsu NH, Wang SL, Liao YH, Huang ST, Tzou YM, Huang YM (2009a) Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. J Hazard Mater 171:1066–1070. https://doi.org/10.1016/j.jhazmat.2009.06.112

    Article  CAS  Google Scholar 

  81. Hsu NH, Wang SL, Lin YC, Sheng GD, Lee JF (2009b) Reduction of Cr(VI) by crop-residue-derived black carbon. Environ Sci Technol 43:8801–8806. https://doi.org/10.1021/es901872x

    Article  CAS  Google Scholar 

  82. Hu X, Ding ZH, Zimmerman AR, Wang SS, Gao B (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216. https://doi.org/10.1016/j.watres.2014.10.009

    Article  CAS  Google Scholar 

  83. IBI (2012) Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative, Washington

    Google Scholar 

  84. Ifthikar J et al (2018) Facile one-pot synthesis of sustainable carboxymethyl chitosan—sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresour Technol 262:22–31. https://doi.org/10.1016/j.biortech.2018.04.053

    Article  CAS  Google Scholar 

  85. Igalavithana AD et al (2017) Effect of corn residue biochar on the hydraulic properties of sandy loam soil. Sustainability. https://doi.org/10.3390/su9020266

    Article  Google Scholar 

  86. Imam T, Capareda S (2012) Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J Anal Appl Pyrol 93:170–177. https://doi.org/10.1016/j.jaap.2011.11.010

    Article  CAS  Google Scholar 

  87. Inyang M, Gao B, Yao Y, Xue YW, Zimmerman AR, Pullammanappallil P, Cao XD (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. https://doi.org/10.1016/j.biortech.2012.01.072

    Article  CAS  Google Scholar 

  88. Irfan M, Chen Q, Yue Y, Pang RZ, Lin QM, Zhao XR, Chen H (2016) Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. Bioresour Technol 211:457–463. https://doi.org/10.1016/j.biortech.2016.03.077

    Article  CAS  Google Scholar 

  89. Jean J et al (2012) Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J Environ Manag 103:113–121. https://doi.org/10.1016/j.jenvman.2012.03.005

    Article  CAS  Google Scholar 

  90. Jin HM, Capareda S, Chang ZZ, Gao J, Xu YD, Zhang JY (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. https://doi.org/10.1016/j.biortech.2014.06.103

    Article  CAS  Google Scholar 

  91. Jindo K, Sonoki T, Matsumoto K, Canellas L, Roig A, Sanchez-Monedero MA (2016) Influence of biochar addition on the humic substances of composting manures. Waste Manag 49:545–552. https://doi.org/10.1016/j.wasman.2016.01.007

    Article  CAS  Google Scholar 

  92. Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. https://doi.org/10.1016/j.soilbio.2011.10.012

    Article  CAS  Google Scholar 

  93. Jung KW, Lee SY, Lee YJ (2018) Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions. Bioresour Technol 261:1–9. https://doi.org/10.1016/j.biortech.2018.04.003

    Article  CAS  Google Scholar 

  94. Kalyani P, Anitha A (2013) Biomass carbon and its prospects in electrochemical energy systems. Int J Hydrogen Energ 38:4034–4045. https://doi.org/10.1016/j.ijhydene.2013.01.048

    Article  CAS  Google Scholar 

  95. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  CAS  Google Scholar 

  96. Karhu K, Mattila T, Bergstrom I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agr Ecosyst Environ 140:309–313. https://doi.org/10.1016/j.agee.2010.12.005

    Article  CAS  Google Scholar 

  97. Keiluweit M, Kleber M, Sparrow MA, Simoneit BRT, Prahl FG (2012) Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ Sci Technol 46:9333–9341. https://doi.org/10.1021/es302125k

    Article  CAS  Google Scholar 

  98. Khan S, Chao C, Waqas M, Arp HPH, Zhu Y-G (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632. https://doi.org/10.1021/es400554x

    Article  CAS  Google Scholar 

  99. Kloss S et al (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000. https://doi.org/10.2134/jeq2011.0070

    Article  CAS  Google Scholar 

  100. Kolodynska D, Krukowska J, Thomas P (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem Eng J 307:353–363. https://doi.org/10.1016/j.cej.2016.08.088

    Article  CAS  Google Scholar 

  101. Lahijani P, Mohammadi M, Mohamed AR (2018) Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. J CO2 Util 26:281–293. https://doi.org/10.1016/j.jcou.2018.05.018

    Article  CAS  Google Scholar 

  102. Laird DA et al (2017) Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 289:46–53. https://doi.org/10.1016/j.geoderma.2016.11.025

    Article  CAS  Google Scholar 

  103. Lehmann J (2007) A handful of carbon. Nature 447:143–144. https://doi.org/10.1038/447143a

    Article  CAS  Google Scholar 

  104. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routlenge, London

    Book  Google Scholar 

  105. Lehmann J et al (2008) Australian climate–carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835. https://doi.org/10.1038/ngeo358

    Article  CAS  Google Scholar 

  106. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  107. Li FY, Cao XD, Zhao L, Wang JF, Ding ZL (2014a) Effects of mineral additives on biochar formation: carbon retention, stability, and properties. Environ Sci Technol 48:11211–11217. https://doi.org/10.1021/es5018851

    Article  CAS  Google Scholar 

  108. Li JF, Li YM, Wu YL, Zheng MY (2014b) A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J Hazard Mater 280:450–457. https://doi.org/10.1016/j.jhazmat.2014.08.033

    Article  CAS  Google Scholar 

  109. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014c) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  110. Li B, Yang L, Wang CQ, Zhang QP, Liu QC, Li YD, Xiao R (2017a) Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175:332–340. https://doi.org/10.1016/j.chemosphere.2017.02.061

    Article  CAS  Google Scholar 

  111. Li RH, Wang JJ, Zhou BY, Zhang ZQ, Liu S, Lei S, Xiao R (2017b) Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J Clean Prod 147:96–107. https://doi.org/10.1016/j.jclepro.2017.01.069

    Article  CAS  Google Scholar 

  112. Lian F, Xing BS (2017) Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environ Sci Technol 51:13517–13532. https://doi.org/10.1021/acs.est.7b02528

    Article  CAS  Google Scholar 

  113. Lian F, Huang F, Chen W, Xing BS, Zhu LY (2011) Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environ Pollut 159:850–857. https://doi.org/10.1016/j.envpol.2011.01.002

    Article  CAS  Google Scholar 

  114. Lian F, Sun BB, Song ZG, Zhu LY, Qi XH, Xing BS (2014) Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem Eng J 248:128–134. https://doi.org/10.1016/j.cej.2014.03.021

    Article  CAS  Google Scholar 

  115. Lian F, Cui GN, Liu ZQ, Duo L, Zhang GL, Xing BS (2016) One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J Environ Manag 176:61–68. https://doi.org/10.1016/j.jenvman.2016.03.043

    Article  CAS  Google Scholar 

  116. Liao SH, Pan B, Li H, Zhang D, Xing BS (2014) Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ Sci Technol 48:8581–8587. https://doi.org/10.1021/es404250a

    Article  CAS  Google Scholar 

  117. Ling LL, Liu WJ, Zhang S, Jiang H (2017) Magnesium oxide embedded nitrogen self-doped biochar composites: fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environ Sci Technol 51:10081–10089. https://doi.org/10.1021/acs.est7b02382

    Article  CAS  Google Scholar 

  118. Liu CP, Luo CL, Gao Y, Li FB, Lin LW, Wu CA, Li XD (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826. https://doi.org/10.1016/j.envpol.2009.09.029

    Article  CAS  Google Scholar 

  119. Liu ZG, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. https://doi.org/10.1016/j.fuel.2012.07.069

    Article  CAS  Google Scholar 

  120. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    Article  CAS  Google Scholar 

  121. Liu TZ, Gao B, Fang JN, Wang B, Cao XD (2016) Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal. RSC Adv 6:24314–24319. https://doi.org/10.1039/c6ra01895e

    Article  CAS  Google Scholar 

  122. Liu N, Zhou JL, Han LJ, Ma SS, Sun XX, Huang GQ (2017a) Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresour Technol 241:190–199. https://doi.org/10.1016/j.biortech.2017.03.144

    Article  CAS  Google Scholar 

  123. Liu W, Huo R, Xu JX, Liang SX, Li JJ, Zhao TK, Wang ST (2017b) Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresour Technol 235:43–49. https://doi.org/10.1016/j.biortech.2017.03.052

    Article  CAS  Google Scholar 

  124. Lobos MLN, Campitelli P, Volpe MA, Moyano EL (2016) Catalytic and non-catalytic pyrolysis of Kraft pulp waste into anhydrosugars containing bio-oils and non-phytotoxic biochars. J Anal Appl Pyrol 122:216–223. https://doi.org/10.1016/j.jaap.2016.09.021

    Article  CAS  Google Scholar 

  125. Lopez-Cano I, Roig A, Cayuela ML, Alburquerque JA, Sanchez-Monedero MA (2016) Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manag 49:553–559. https://doi.org/10.1016/j.wasman.2015.12.031

    Article  CAS  Google Scholar 

  126. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012a) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862. https://doi.org/10.1016/j.watres.2011.11.058

    Article  CAS  Google Scholar 

  127. Lu HL, Zhang WH, Yang YX, Huang XF, Wang SZ, Qiu RL (2012b) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862. https://doi.org/10.1016/j.watres.2011.11.058

    Article  CAS  Google Scholar 

  128. Lu KP et al (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186:285–292. https://doi.org/10.1016/j.jenvman.2016.05.068

    Article  CAS  Google Scholar 

  129. Luo SS, Wang SJ, Tian L, Li SQ, Li XJ, Shen YF, Tian CJ (2017) Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl Soil Ecol 117:10–15. https://doi.org/10.1016/j.apsoil.2017.04.024

    Article  Google Scholar 

  130. Ly HV, Kim SS, Choi JH, Woo HC, Kim J (2016) Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production. Energ Convers Manag 122:526–534. https://doi.org/10.1016/j.enconman.2016.06.019

    Article  CAS  Google Scholar 

  131. Madari BE et al (2017) Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a 5-year field trial as affected by biochar amendment. Geoderma 305:100–112. https://doi.org/10.1016/j.geoderma.2017.05.029

    Article  CAS  Google Scholar 

  132. Mandal S, Bhattacharya TK, Verma AK, Haydary J (2018) Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem Pap 72:603–616. https://doi.org/10.1007/s11696-017-0306-5

    Article  CAS  Google Scholar 

  133. Manya JJ, Ortigosa MA, Laguarta S, Manso JA (2014) Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar. Fuel 133:163–172. https://doi.org/10.1016/j.fuel.2014.05.019

    Article  CAS  Google Scholar 

  134. Masiello CA, Druffel ERM (2003) Organic and black carbon C-13 and C-14 through the Santa Monica Basin sediment oxic-anoxic transition. Geophys Res Lett. https://doi.org/10.1029/2002gl015050

    Article  Google Scholar 

  135. Meng J, Chen WF (2013) Biochar in China: status quo of research and trend of industrial development. J Shenyang Agric Univ 15:1–5. https://doi.org/10.3969/j.issn.1008-9713.2013.01.001

    CAS  Article  Google Scholar 

  136. Meng J, Feng XL, Dai ZM, Liu XM, Wu JJ, Xu JM (2014) Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure. Environ Sci Pollut R 21:7035–7046. https://doi.org/10.1007/s11356-014-2627-z

    Article  CAS  Google Scholar 

  137. Mierzwa-Hersztek M, Gondek K, Baran A (2016) Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl Soil Ecol 105:144–150. https://doi.org/10.1016/j.apsoil.2016.04.006

    Article  Google Scholar 

  138. Mierzwa-Hersztek M, Gondek K, Klimkowicz-Pawlas A, Baran A (2017) Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield. Int Agrophys 31:367–375. https://doi.org/10.1515/intag-2016-0063

    Article  CAS  Google Scholar 

  139. Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU (2011) Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J Hazard Mater 188:319–333. https://doi.org/10.1016/j.jhazmat.2011.01.127

    Article  CAS  Google Scholar 

  140. Morali U, Yavuzel N, Sensoz S (2016) Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char. Bioresour Technol 221:682–685. https://doi.org/10.1016/j.biortech.2016.09.081

    Article  CAS  Google Scholar 

  141. Mukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193:122–130. https://doi.org/10.1016/j.geoderma.2012.10.002

    Article  CAS  Google Scholar 

  142. Mukherjee A, Zimmerman AR, Hamdan R, Cooper WT (2014) Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth 5:693–704. https://doi.org/10.5194/se-5-693-2014

    Article  Google Scholar 

  143. Nelissen V, Rutting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27. https://doi.org/10.1016/j.soilbio.2012.05.019

    Article  CAS  Google Scholar 

  144. Neumann J, Meyer J, Ouadi M, Apfelbacher A, Binder S, Hornung A (2016) The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process. Waste Manag 47:141–148. https://doi.org/10.1016/j.wasman.2015.07.001

    Article  CAS  Google Scholar 

  145. Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89:295–308. https://doi.org/10.1007/s10533-008-9220-9

    Article  CAS  Google Scholar 

  146. Niu Q, Luo JJ, Xia YX, Sun SQ, Chen Q (2017) Surface modification of bio-char by dielectric barrier discharge plasma for Hg−0 removal. Fuel Process Technol 156:310–316. https://doi.org/10.1016/j.fuproc.2016.09.013

    Article  CAS  Google Scholar 

  147. Oh SY, Son JG, Chiu PC (2013) Biochar-mediated reductive transformation of nitro herbicides and explosives. Environ Toxicol Chem 32:501–508. https://doi.org/10.1002/etc.2087

    Article  CAS  Google Scholar 

  148. Olawumi TO, Chan DWM (2018) A scientometric review of global research on sustainability and sustainable development. J Clean Prod 183:231–250. https://doi.org/10.1016/j.jclepro.2018.02.162

    Article  Google Scholar 

  149. Oleszczuk P, Koltowski M (2018) Changes of total and freely dissolved polycyclic aromatic hydrocarbons and toxicity of biochars treated with various aging processes. Environ Pollut 237:65–73. https://doi.org/10.1016/j.envpol.2018.01.073

    Article  CAS  Google Scholar 

  150. Oleszczuk P, Josko I, Kusmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382. https://doi.org/10.1016/j.jhazmat.2013.05.044

    Article  CAS  Google Scholar 

  151. Ortega JV, Renehan AM, Liberatore MW, Herring AM (2011) Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks. J Anal Appl Pyrol 91:190–198. https://doi.org/10.1016/j.jaap.2011.02.007

    Article  CAS  Google Scholar 

  152. Ouyang D et al (2017) Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere 184:609–617. https://doi.org/10.1016/j.chemosphere.2017.05.156

    Article  CAS  Google Scholar 

  153. Pan JJ, Jiang J, Xu RK (2014) Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar. Chemosphere 101:71–76. https://doi.org/10.1016/j.chemosphere.2013.12.026

    Article  CAS  Google Scholar 

  154. Park J, Lee Y, Ryu C, Park YK (2014) Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresour Technol 155:63–70. https://doi.org/10.1016/j.biortech.2013.12.084

    Article  CAS  Google Scholar 

  155. Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC (2016a) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142:77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093

    Article  CAS  Google Scholar 

  156. Park SH, Cho HJ, Ryu C, Park YK (2016b) Removal of copper(II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera. J Ind Eng Chem 36:314–319. https://doi.org/10.1016/j.jiec.2016.02.021

    Article  CAS  Google Scholar 

  157. Park JH, Wang JJ, Xiao R, Tafti N, DeLaune RD, Seo DC (2018) Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst. Bioresour Technol 249:368–376. https://doi.org/10.1016/j.biortech.2017.10.030

    Article  CAS  Google Scholar 

  158. Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Till Res 112:159–166. https://doi.org/10.1016/j.still.2011.01.002

    Article  Google Scholar 

  159. Qian LB, Zhang WY, Yan JC, Han L, Chen Y, Ouyang D, Chen MF (2017) Nanoscale zero-valent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr(VI) removal. Environ Pollut 223:153–160. https://doi.org/10.1016/j.envpol.2016.12.077

    Article  CAS  Google Scholar 

  160. Qin XB et al (2016) Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: a four-year case study in south China. Sci Total Environ 569:1390–1401. https://doi.org/10.1016/j.scitotenv.2016.06.222

    Article  CAS  Google Scholar 

  161. Qin JL, Chen QC, Sun MX, Sun P, Shen GQ (2017a) Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation. Chem Eng J 330:804–812. https://doi.org/10.1016/j.cej.2017.08.013

    Article  CAS  Google Scholar 

  162. Qin YX, Zhang LZ, An TC (2017b) Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III). ACS Appl Mater Inter 9:17116–17125. https://doi.org/10.1021/acsami.7b03310

    CAS  Article  Google Scholar 

  163. Qu TT, Guo WJ, Shen LH, Xiao J, Zhao K (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433. https://doi.org/10.1021/ie1025453

    Article  CAS  Google Scholar 

  164. Raclavska H et al (2018) Possibilities of the utilization of char from the pyrolysis of tetrapak. J Environ Manag 219:231–238. https://doi.org/10.1016/j.jenvman.2018.05.002

    Article  CAS  Google Scholar 

  165. Rafiq MK et al (2017) Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: characterization and initial field trials. Sci Total Environ 607:184–194. https://doi.org/10.1016/j.scitotenv.2017.06.186

    Article  CAS  Google Scholar 

  166. Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fert Soils 48:271–284. https://doi.org/10.1007/s00374-011-0624-7

    Article  CAS  Google Scholar 

  167. Rawal A et al (2016) Mineral-Biochar Composites: molecular Structure and Porosity. Environ Sci Technol 50:7706–7714. https://doi.org/10.1021/acs.est.6b00685

    Article  CAS  Google Scholar 

  168. Reguyal F, Sarmah AK, Gao W (2017) Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J Hazard Mater 321:868–878. https://doi.org/10.1016/j.jhazmat.2016.10.006

    Article  CAS  Google Scholar 

  169. Ren NN, Tang YY, Li M (2018) Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar. Process Saf Environ 115:70–78. https://doi.org/10.1016/j.psep.2017.11.006

    Article  CAS  Google Scholar 

  170. Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life Cycle Assessment of Biochar Systems: estimating the Energetic, Economic, and Climate Change Potential. Environ Sci Technol 44:827–833. https://doi.org/10.1021/es902266r

    Article  CAS  Google Scholar 

  171. Rombola AG, Marisi G, Torri C, Fabbri D, Buscaroli A, Ghidotti M, Hornung A (2015) Relationships between Chemical Characteristics and Phytotoxicity of Biochar from Poultry Litter Pyrolysis. J Agr Food Chem 63:6660–6667. https://doi.org/10.1021/acs.jafc.5b01540

    Article  CAS  Google Scholar 

  172. Ruan ZH et al (2015) Facile preparation of rosin-based biochar coated bentonite for supporting alpha-Fe2O3 nanoparticles and its application for Cr(VI) adsorption. J Mater Chem A 3:4595–4603. https://doi.org/10.1039/c4ta06491g

    Article  CAS  Google Scholar 

  173. Sanger A, Reibe K, Mumme J, Kaupenjohann M, Ellmer F, Ross CL, Meyer-Aurich A (2017) Biochar application to sandy soil: effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch Agron Soil Sci 63:213–229. https://doi.org/10.1080/03650340.2016.1223289

    Article  CAS  Google Scholar 

  174. Shabangu S, Woolf D, Fisher EM, Angenent LT, Lehmann J (2014) Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel 117:742–748. https://doi.org/10.1016/j.fuel.2013.08.053

    Article  CAS  Google Scholar 

  175. Shan DN et al (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163. https://doi.org/10.1016/j.jhazmat.2015.11.047

    Article  CAS  Google Scholar 

  176. Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis-A review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev 50:1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

    Article  CAS  Google Scholar 

  177. Shi Y (2011) China’s resources of biomass feedstock. Eng Sci 13:16–23

    Google Scholar 

  178. Shi YJ, Zhang T, Ren HQ, Kruse A, Cui RF (2018) Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresource Technol 247:370–379. https://doi.org/10.1016/j.biortech.2017.09.107

    Article  CAS  Google Scholar 

  179. Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235. https://doi.org/10.2134/jeq2009.0138

    Article  CAS  Google Scholar 

  180. Singh BP, Cowie AL, Smernik RJ (2012) biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778. https://doi.org/10.1021/es302545b

    Article  CAS  Google Scholar 

  181. Solaiman ZM, Murphy DV, Abbott LK (2012) Biochars influence seed germination and early growth of seedlings. Plant Soil 353:273–287. https://doi.org/10.1007/s11104-011-1031-4

    Article  CAS  Google Scholar 

  182. Son EB, Poo KM, Mohamed HO, Choi YJ, Cho WC, Chae KJ (2018) A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation. Bioresour Technol 259:381–387. https://doi.org/10.1016/j.biortech.2018.03.077

    Article  CAS  Google Scholar 

  183. Sorensen JPR et al (2015) Emerging contaminants in urban groundwater sources in Africa. Water Res 72:51–63. https://doi.org/10.1016/j.watres.2014.08.002

    Article  CAS  Google Scholar 

  184. Sorrenti G, Masiello CA, Dugan B, Toselli M (2016) Biochar physico-chemical properties as affected by environmental exposure. Sci Total Environ 563:237–246. https://doi.org/10.1016/j.scitotenv.2016.03.245

    Article  CAS  Google Scholar 

  185. Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581. https://doi.org/10.1016/j.chemosphere.2009.06.053

    Article  CAS  Google Scholar 

  186. Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350:35–42. https://doi.org/10.1007/s11104-011-0930-8

    Article  CAS  Google Scholar 

  187. Stefaniuk M, Oleszczuk P (2016) Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil. Environ Pollut 218:242–251. https://doi.org/10.1016/j.envpol.2016.06.063

    Article  CAS  Google Scholar 

  188. Su HJ, Fang ZQ, Tsang PE, Fang JZ, Zhao DY (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100. https://doi.org/10.1016/j.envpol.2016.03.072

    Article  CAS  Google Scholar 

  189. Sun K, Keiluweit M, Kleber M, Pan ZZ, Xing BS (2011) Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technol 102:9897–9903. https://doi.org/10.1016/j.biortech.2011.08.036

    Article  CAS  Google Scholar 

  190. Sun DQ, Lan Y, Xu EG, Meng J, Chen WF (2016) Biochar as a novel niche for culturing microbial communities in composting. Waste Manag 54:93–100. https://doi.org/10.1016/j.wasman.2016.05.004

    Article  CAS  Google Scholar 

  191. Sun ZC, Sanger A, Rebensburg P, Lentzsch P, Wirth S, Kaupenjohann M, Meyer-Aurich A (2017) Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam. Sci Total Environ 578:557–565. https://doi.org/10.1016/j.scitotenv.2016.10.230

    Article  CAS  Google Scholar 

  192. Sun X, Han XG, Ping F, Zhang L, Zhang KS, Chen M, Wu WX (2018) Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO2 and temperature. Sci Total Environ 628–629:1009–1016. https://doi.org/10.1016/j.scitotenv.2018.02.046

    Article  CAS  Google Scholar 

  193. Tan YL, Abdullah AZ, Hameed BH (2017) Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: pyrolysis behavior and product analyses. Bioresource Technol 243:85–92. https://doi.org/10.1016/j.biortech.2017.06.015

    Article  CAS  Google Scholar 

  194. Tarves PC, Mullen CA, Boateng AA (2016) Effects of various reactive gas atmospheres on the properties of bio-oils produced using microwave Pyrolysis. Acs Sustain Chem Eng 4:930–936. https://doi.org/10.1021/acssuschemeng.5b01016

    Article  CAS  Google Scholar 

  195. Teixido M, Pignatello JJ, Beltran JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027. https://doi.org/10.1021/es202487h

    Article  CAS  Google Scholar 

  196. Tong XJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834. https://doi.org/10.1016/j.cej.2011.06.069

    Article  CAS  Google Scholar 

  197. Trakal L, Bingol D, Pohorely M, Hruska M, Komarek M (2014) Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications. Bioresource Technol 171:442–451. https://doi.org/10.1016/j.biortech.2014.08.108

    Article  CAS  Google Scholar 

  198. Trakal L, Veselska V, Safarik I, Vitkova M, Cihalova S, Komarek M (2016) Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technol 203:318–324. https://doi.org/10.1016/j.biortech.2015.12.056

    Article  CAS  Google Scholar 

  199. Uchimiya M, Lima IM, Klasson KT, Chang SC, Wartelle LH, Rodgers JE (2010) Immobilization of Heavy Metal Ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil. J Agr Food Chem 58:5538–5544. https://doi.org/10.1021/jf9044217

    Article  CAS  Google Scholar 

  200. Van Zwieten L et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. https://doi.org/10.1007/s11104-009-0050-x

    Article  CAS  Google Scholar 

  201. Van Zwieten L, Singh BP, Kimber SWL, Murphy DV, Macdonald LM, Rust J, Morris S (2014) An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agr Ecosyst Environ 191:53–62. https://doi.org/10.1016/j.agee.2014.02.030

    Article  CAS  Google Scholar 

  202. Wang XS, Chen LF, Li FY, Chen KL, Wan WY, Tang YJ (2010) Removal of Cr(VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. J Hazard Mater 175:816–822. https://doi.org/10.1016/j.jhazmat.2009.10.082

    Article  CAS  Google Scholar 

  203. Wang Y, Hu Y, Zhao X, Wang S, Xing G (2013) Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energ Fuel 27:5890–5899. https://doi.org/10.1021/ef400972z

    Article  CAS  Google Scholar 

  204. Wang SS et al (2015a) Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol 181:13–17. https://doi.org/10.1016/j.biortech.2015.01.044

    Article  CAS  Google Scholar 

  205. Wang SS, Gao B, Zimmerman AR, Li YC, Ma L, Harris WG, Migliaccio KW (2015b) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395. https://doi.org/10.1016/j.biortech.2014.10.104

    Article  CAS  Google Scholar 

  206. Wang ZY et al (2015c) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317. https://doi.org/10.1016/j.biortech.2014.11.077

    Article  CAS  Google Scholar 

  207. Wang SS, Gao B, Li YC (2016) Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides. J Ind Eng Chem 37:361–365. https://doi.org/10.1016/j.jiec.2016.03.048

    Article  CAS  Google Scholar 

  208. Wang H et al (2017a) Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar. J Disper Sci Technol 38:815–825. https://doi.org/10.1080/01932691.2016.1203333

    Article  CAS  Google Scholar 

  209. Wang J et al (2017b) Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 185:754–763. https://doi.org/10.1016/j.chemosphere.2017.07.084

    Article  CAS  Google Scholar 

  210. Wang N, Chang ZZ, Xue XM, Yu JG, Shi XX, Ma LQ, Li HB (2017c) Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci Total Environ 581:689–696. https://doi.org/10.1016/jscitotenv.2016.12.181

    Article  Google Scholar 

  211. Wang S, Gao B, Li Y, Creamer AE, He F (2017d) Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J Hazard Mater 322:172–181. https://doi.org/10.1016/j.jhazmat.2016.01.052

    Article  CAS  Google Scholar 

  212. Wang XQ, Zhao Y, Wang H, Zhao XY, Cui HY, Wei ZM (2017e) Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition. Waste Manag 61:150–156. https://doi.org/10.1016/j.wasman.2016.12.024

    Article  CAS  Google Scholar 

  213. Wang L, Li LQ, Cheng K, Ji CY, Yue Q, Bian RJ, Pan GX (2018) An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China. Environ Sci Pollut R 25:9683–9696. https://doi.org/10.1007/s11356-018-1245-6

    Article  CAS  Google Scholar 

  214. Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300:9–20. https://doi.org/10.1007/s11104-007-9391-5

    Article  CAS  Google Scholar 

  215. Wiedemeier DB et al (2015) Aromaticity and degree of aromatic condensation of char. Org Geochem 78:135–143. https://doi.org/10.1016/j.orggeochem.2014.10.002

    Article  CAS  Google Scholar 

  216. Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197. https://doi.org/10.1016/j.jenvman.2014.08.003

    Article  CAS  Google Scholar 

  217. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. https://doi.org/10.1038/ncomms1053

    Article  CAS  Google Scholar 

  218. Wu K et al (2017a) Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures. J Anal Appl Pyrol 127:335–342. https://doi.org/10.1016/j.jaap.2017.07.017

    Article  CAS  Google Scholar 

  219. Wu WD et al (2017b) Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: a microscopic and spectroscopic investigation. Sci Total Environ 576:766–774. https://doi.org/10.1016/j.sdtotenv.2016.10.163

    Article  CAS  Google Scholar 

  220. Xiao F, Pignatello JJ (2016) Effects of post-pyrolysis air oxidation of biomass chars on adsorption of neutral and ionizable compounds. Environ Sci Technol 50:6276–6283. https://doi.org/10.1021/acs.est.6b00362

    Article  CAS  Google Scholar 

  221. Xiao X, Chen BL, Zhu LZ (2014) Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol 48:3411–3419. https://doi.org/10.1021/es405676h

    Article  CAS  Google Scholar 

  222. Xiao F, Bedane AH, Zhao J, Mann MD, Pignatello JJ (2018a) Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Sci Total Environ 618:276–283. https://doi.org/10.1016/j.scitotenv.2017.11.008

    Article  CAS  Google Scholar 

  223. Xiao R et al (2018b) Biochar produced from mineral salt-impregnated chicken manure: fertility properties and potential for carbon sequestration. Waste Manag 78:802–810. https://doi.org/10.1016/j.wasman.2018.06.047

    Article  CAS  Google Scholar 

  224. Xie MX, Chen W, Xu ZY, Zheng SR, Zhu DQ (2014) Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ Pollut 186:187–194. https://doi.org/10.1016/j.envpol.2013.11.022

    Article  CAS  Google Scholar 

  225. Xing GX, Zhu ZL (2000) An assessment of N loss from agricultural fields to the environment in China. Nutr Cycl Agroecosys 57:67–73. https://doi.org/10.1023/a:1009717603427

    Article  Google Scholar 

  226. Xu RK, Xiao SC, Yuan JH, Zhao AZ (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102:10293–10298. https://doi.org/10.1016/j.biortech.2011.08.089

    Article  CAS  Google Scholar 

  227. Yan JC, Qian LB, Gao WG, Chen Y, Ouyang D, Chen MF (2017) Enhanced Fenton-like degradation of trichloroethylene by hydrogen peroxide activated with nanoscale zero valent iron loaded on biochar. Sci Rep. https://doi.org/10.1038/srep43051

    Article  Google Scholar 

  228. Yang F, Zhao L, Gao B, Xu XY, Cao XD (2016a) The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ Sci Technol 50:2264–2271. https://doi.org/10.1021/acs.est.5b03656

    Article  CAS  Google Scholar 

  229. Yang J, Pan B, Li H, Liao SH, Zhang D, Wu M, Xing BS (2016b) Degradation of p-Nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol 50:694–700. https://doi.org/10.1021/acs.est.5b04042

    Article  CAS  Google Scholar 

  230. Yang J, Pignatello JJ, Pan B, Xing BS (2017) Degradation of p-Nitrophenol by Lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char. Environ Sci Technol 51:8972–8980. https://doi.org/10.1021/acs.est.7b01087

    Article  CAS  Google Scholar 

  231. Yang F, Xu ZB, Yu L, Gao B, Xu XY, Zhao L, Cao XD (2018a) Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms. Environ Sci Technol 52:8321–8329. https://doi.org/10.1021/acs.est.8b00306

    Article  CAS  Google Scholar 

  232. Yang Y, Sun K, Han LF, Jin J, Sun HR, Yang Y, Xing BS (2018b) Effect of minerals on the stability of biochar. Chemosphere 204:310–317. https://doi.org/10.1016/j.chemosphere.2018.04.057

    Article  CAS  Google Scholar 

  233. Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002

    Article  CAS  Google Scholar 

  234. Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47:8700–8708. https://doi.org/10.1021/es4012977

    Article  CAS  Google Scholar 

  235. Yin DX, Wang X, Chen C, Peng B, Tan CY, Li HL (2016) Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 152:196–206. https://doi.org/10.1016/j.chemosphere.2016.01.044

    Article  CAS  Google Scholar 

  236. Yoon K, Cho DW, Tsang DCW, Bolan N, Rinklebe J, Song H (2017) Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresour Technol 246:69–75. https://doi.org/10.1016/j.biortech.2017.07.020

    Article  CAS  Google Scholar 

  237. Yu DJ, Xu C (2017) Mapping research on carbon emissions trading: a co-citation analysis. Renew Sust Energ Rev 74:1314–1322. https://doi.org/10.1016/j.rser.2016.11.144

    Article  Google Scholar 

  238. Yu J, Zhao Y, Li Y (2014) Utilization of corn cob biochar in a direct carbon fuel cell. J Power Sources 270:312–317. https://doi.org/10.1016/j.jpowsour.2014.07.125

    Article  CAS  Google Scholar 

  239. Yu D, Xu Z, Pedrycz W, Wang W (2017) Information sciences 1968–2016: a retrospective analysis with text mining and bibliometric. Inform Sci 418:619–634. https://doi.org/10.1016/j.ins.2017.08.031

    Article  Google Scholar 

  240. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018

    Article  CAS  Google Scholar 

  241. Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292. https://doi.org/10.1016/j.cej.2013.04.077

    Article  CAS  Google Scholar 

  242. Zhang A et al (2012) Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160. https://doi.org/10.1016/j.fcr.2011.11.020

    Article  Google Scholar 

  243. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013a) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462. https://doi.org/10.1016/j.biortech.2012.11.132

    Article  CAS  Google Scholar 

  244. Zhang P, Sun H, Yu L, Sun T (2013b) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater 244:217–224. https://doi.org/10.1016/j.jhazmat.2012.11.046

    Article  CAS  Google Scholar 

  245. Zhang WH, Mao SY, Chen H, Huang L, Qiu RL (2013c) Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresource Technol 147:545–552. https://doi.org/10.1016/j.biortech.2013.08.082

    Article  CAS  Google Scholar 

  246. Zhang F et al (2015) Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag 153:68–73. https://doi.org/10.1016/j.jenvman.2015.01.043

    Article  CAS  Google Scholar 

  247. Zhang F, Wang X, Ji XH, Ma LJ (2016a) Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environ Pollut 216:575–583. https://doi.org/10.1016/j.envpol.2016.06.013

    Article  CAS  Google Scholar 

  248. Zhang JN, Chen GF, Sun HF, Zhou S, Zou GY (2016b) Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresource Technol 200:876–883. https://doi.org/10.1016/j.biortech.2015.11.016

    Article  CAS  Google Scholar 

  249. Zhang H, Xue G, Chen H, Li X (2018) Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere 191:64–71. https://doi.org/10.1016/j.chemosphere.2017.10.026

    Article  CAS  Google Scholar 

  250. Zheng H, Wang ZY, Deng X, Herbert S, Xing BS (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39. https://doi.org/10.1016/j.geoderma.2013.04.018

    Article  CAS  Google Scholar 

  251. Zheng HS et al (2017) Adsorption of p-Nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism. Bioresour Technol 244:1456–1464. https://doi.org/10.1016/j.biortech.2017.05.025

    Article  CAS  Google Scholar 

  252. Zhou Y et al (2017a) Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production. J Anal Appl Pyrol 124:35–41. https://doi.org/10.1016/j.jaap.2017.02.026

    Article  CAS  Google Scholar 

  253. Zhou YY et al (2017b) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245:266–273. https://doi.org/10.1016/j.biortech.2017.08.178

    Article  CAS  Google Scholar 

  254. Zhou Z et al (2017c) Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chem Eng J 314:223–231. https://doi.org/10.1016/j.cej.2016.12.113

    Article  CAS  Google Scholar 

  255. Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. https://doi.org/10.1021/es903140c

    Article  CAS  Google Scholar 

  256. Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005

    Article  CAS  Google Scholar 

  257. Zuo XJ, Liu ZG, Chen MD (2016) Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar. Bioresour Technol 207:262–267. https://doi.org/10.1016/j.biortech.2016.02.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the National Natural Science Foundation of China (21537002, 41422105, 41671478), and the Natural Science Foundation of Jiangsu Province, China (Project No. BK20130050).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yujun Wang or Wenfu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Ata-Ul-Karim, S.T., Singh, B.P. et al. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 1, 23–43 (2019). https://doi.org/10.1007/s42773-019-00002-9

Download citation

Keywords

  • Biochar
  • CiteSpace
  • Research hotspots
  • Composting
  • Energy
  • Modification