Skip to main content

Advertisement

Log in

Antifungal activity of β-lapachone against a fluconazole-resistant Candida auris strain

  • Medicine and Public Health - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Candida spp. can be found in the human microbiome. However, immunocompromised patients are likely to develop invasive Candida infections, with mortality rates higher than 50%. The discovery of C. auris, a species that rapidly acquire antifungal resistance, increased the concern about Candida infections. The limited number of antifungal agents and the high incidence of resistance to them make imperative the development of new antifungal drugs. β-lapachone is a biological active naphthoquinone that displays antifungal activity against C. albicans and C. glabrata. The aim of this study was to evaluate if this substance affects C. auris growth and elucidate its mechanism of action. A fluconazole-resistant C. auris isolate was used in this study. The antifungal activity of β-lapachone was determined through microbroth dilution assays, and its mechanism of action was evaluated using fluorescent probes. Interaction with fluconazole and amphotericin B was assessed by disk diffusion assay and checkerboard. β-lapachone inhibited planktonic C. auris cell growth by 92.7%, biofilm formation by 84.9%, and decrease the metabolism of preformed biofilms by 87.1% at 100 µg/ml. At 100 µg/ml, reductions of 30% and 59% of Calcofluor White and Nile red fluorescences were observed, indicating that β-lapachone affects cell wall chitin and neutral lipids content, respectively. Also, the ratio 590 nm/529 nm of JC-1 decreased 52%, showing that the compound affects mitochondria. No synergism was observed between β-lapachone and fluconazole or amphotericin B. Data show that β-lapachone may be a promising candidate to be used as monotherapy to treat C. auris resistant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li H, Miao MX, Jia CL, Cao YB, Yan TH, Jiang YY et al (2022) Interactions between Candida albicans and the resident microbiota. Front Microbiol 13:1–13. https://doi.org/10.3389/fmicb.2022.930495

    Article  Google Scholar 

  2. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:1–10. https://doi.org/10.1126/scitranslmed.3004404

    Article  CAS  Google Scholar 

  3. Zhang Z, Zhu R, Luan Z, Ma X (2020) Risk of invasive candidiasis with prolonged duration of ICU stay: a systematic review and meta-analysis. BMJ Open 10. https://doi.org/10.1136/bmjopen-2019-036452

  4. Arendrup MC, Arikan-Akdagli S, Jørgensen KM, Barac A, Steinmann J, Toscano C et al (2023) European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: results from the ECMM Candida III study. J Infect 1–10. https://doi.org/10.1016/j.jinf.2023.08.001

  5. Lockhart SR, Chowdhary A, Gold JAW (2023) The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol https://doi. https://doi.org/10.1038/s41579-023-00960-9

    Article  Google Scholar 

  6. Nobrega de Almeida J, Brandão IB, Francisco EC, de Almeida SLR, de Oliveira Dias P, Pereira FM et al (2021) Axillary Digital thermometers uplifted a multidrug-susceptible Candida Auris outbreak among COVID-19 patients in Brazil. Mycoses 64:1062–1072. https://doi.org/10.1111/myc.13320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tharp B, Zheng R, Bryak G, Litvintseva AP, Hayden MK, Chowdhary A et al (2023) Role of Microbiota in the skin colonization of Candida Auris. MSphere 8:10–13. https://doi.org/10.1128/msphere.00623-22

    Article  CAS  Google Scholar 

  8. Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA et al (2017) Plants’ Natural products as Alternative Promising Anti-Candida drugs. Pharmacogn Ver 11:104–122

    Article  CAS  Google Scholar 

  9. Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC et al (2023) β-Lapachone exerts Anticancer effects by Downregulating p53, Lys-Acetylated Proteins, TrkA, p38 MAPK, SOD1, Caspase-2, CD44 and NPM in oxaliplatin-resistant HCT116 colorectal Cancer cells. Int J Mol Sci 24. https://doi.org/10.3390/ijms24129867

  10. Ramos-Milaré CFH, Sydor BG, Brustolin A, Lera-Nonose DSSL, Oyama J, Silva EL et al (2023) In vitro effects of lapachol and β-lapachone against Leishmania amazonensis. Brazilian J Med Biol Res 56:1–13. https://doi.org/10.1590/1414-431X2023e12693

    Article  Google Scholar 

  11. Moraes DC, Curvelo JAR, Anjos CA, Moura KCG, Pinto MCFR, Portela MB et al (2018) β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors. J Mycol Med 28:314–319. https://doi.org/10.1016/j.mycmed.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  12. de Moraes DC, Cardoso KM, Domingos LTS, do Carmo Freire Ribeiro, Pinto M, Monteiro RQ, Ferreira-Pereira A (2020) β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain. Brazilian J Microbiol. https://doi.org/10.1007/s42770-020-00254-9

    Article  Google Scholar 

  13. Moraes DC, Reis de Sá LF, Domingos LTS, Pinto M, do CFR, Soares RM, de Ferreira-Pereira A A (2020) Synergistic interactions between β-lapachone and fluconazole in the inhibition of CaCdr2p and CaMdr1p in Candida albicans. Rev Iberoam Micol 37:104–106. https://doi.org/10.1016/j.riam.2020.09.002

    Article  PubMed  Google Scholar 

  14. de Clemente D, do, Carmo Freire Ribeiro Pinto M, Tenório S, Domingos L, do, Valle Pereira Midlej V, Ferreira-Pereira A (2022) Effects of β-lapachone and β-nor-lapachone on multidrug efflux transporters and biofilms of Candida glabrata. Bioorganic Med Chem 63. https://doi.org/10.1016/j.bmc.2022.116749

  15. Rollin-Pinheiro R, da Silva Xisto MID, de Castro-Almeida Y, Rochetti VP, Borba-Santos LP, da Silva Fontes Y et al (2023) Pandemic response Box® library as a source of antifungal drugs against Scedosporium and Lomentospora species. PLoS ONE 18:1–21. https://doi.org/10.1371/journal.pone.0280964

    Article  CAS  Google Scholar 

  16. Reis De Sá LF, Toledo FT, De Sousa BA, Gonçalves AC, Tessis AC, Wendler EP et al (2014) Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae. BMC Microbiol 14:1–9. https://doi.org/10.1186/s12866-014-0201-y

    Article  CAS  Google Scholar 

  17. Domingos LTS, Pereira FG, Moraes DC, Marquete R, Eduardo M et al (2021) Casearia sylvestris essential oil and its fractions inhibit Candida albicans ABC transporters related to multidrug resistance (MDR). Rodriguesia 72:ee00432020

    Article  Google Scholar 

  18. Niimi K, Harding DRK, Parshot R, King A, Lun DJ, Decottignies A et al (2004) Chemosensitization of Fluconazole Resistance in Saccharomyces cerevisiae and pathogenic Fungi by a D -Octapeptide derivative. Antimicrob Agents Chemother 48:1256–1271. https://doi.org/10.1128/AAC.48.4.1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Massarine NCM, de Souza GH, de Nunes A, Salomé IB, Barbosa TM, dos M, Faccin S I, et al (2023) How did COVID-19 Impact the Antimicrobial Consumption and Bacterial Resistance profiles in Brazil? Antibiotics 12:1374. https://doi.org/10.3390/antibiotics12091374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sobel JD (2021) Resistance to Fluconazole of Candida albicans in Vaginal isolates: a 10-Year study in a clinical Referral Center. Antimicrob Agents Chemother 193:23–26

    Google Scholar 

  21. Costa DCF, Rangel LP, Martins-Dinis MMDC, Ferretti GDS, Ferreira VF, Silva JL (2020) Anticancer potential of resveratrol, β-lapachone and their analogues. Molecules 25:893. https://doi.org/10.3390/molecules25040893

    Article  CAS  Google Scholar 

  22. Cavalcanti IMF, Pontes-Neto JG, Kocerginsky PO, Bezerra-Neto AM, Lima JLC, Lira-Nogueira MCB et al (2015) Antimicrobial activity of β-lapachone encapsulated into liposomes against meticillin-resistant Staphylococcus aureus and Cryptococcus neoformans clinical strains. J Glob Antimicrob Resist 3:103–108. https://doi.org/10.1016/j.jgar.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  23. Brilhante RSN, Caetano ÉP, de Lima RAC, Marques FJF, Castelo-Branco DSCM, Melo CVS et al (2016) Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Brazilian J Microbiol 47:917–924. https://doi.org/10.1016/j.bjm.2016.07.015

    Article  CAS  Google Scholar 

  24. Anaissi-Afonso L, Oramas-Royo S, Ayra-Plasencia J, Martín-Rodríguez P, García-Luis J, Lorenzo-Castrillejo I et al (2018) Lawsone, Juglone, and β-Lapachone derivatives with enhanced mitochondrial-based toxicity. ACS Chem Biol 13:1950–1957. https://doi.org/10.1021/acschembio.8b00306

    Article  CAS  PubMed  Google Scholar 

  25. Silva CR, Campos RS, Neto JBA, Sampaio LS, Nascimento FBSA, Sá LGA et al (2020) Antifungal activity of β-lapachone against azole-resistant Candida spp. and its aspects upon biofilm formation. Future Microbiol 15:1543–1554. https://doi.org/10.2217/fmb-2020-0011

    Article  CAS  PubMed  Google Scholar 

  26. Kodedová M, Valachovič M, Csáky Z, Sychrová H (2019) Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides. Cell Microbiol 21:e13093. https://doi.org/10.1111/cmi.13093

    Article  CAS  PubMed  Google Scholar 

  27. Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF et al (2021) Mechanistic understanding of Candida albicans Biofilm formation and approaches for its inhibition. Front Microbiol 12:638609. https://doi.org/10.3389/fmicb.2021.638609

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pereira R, Fontenelle ROS, Brito EHS, Morais SM (2021) Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol 131:11–22. https://doi.org/10.1111/jam.14949

    Article  CAS  PubMed  Google Scholar 

  29. Kernien JF, Johnson CJ, Bayless ML, Chovanec JF, Nett JE (2020) Neutrophils from patients with invasive candidiasis are inhibited by Candida albicans Biofilms. Front Immunol 11:1–10. https://doi.org/10.3389/fimmu.2020.587956

    Article  CAS  Google Scholar 

  30. Uppuluri P, Zaldívar A, Anderson MZ, Dunn MJ, Berman J, Ribot JLL et al (2018) Candida albicans dispersed cells are developmentally distinct. MBio 9:1–16

    Article  Google Scholar 

  31. Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida Biofilm drug resistance. Future Microbiol 8:1325–1337. https://doi.org/10.2217/fmb.13.101

    Article  CAS  PubMed  Google Scholar 

  32. Kung H-N (2014) The chemotherapeutic effects of lapacho tree extract: β-lapachone Chemother Open Access 03. https://doi.org/10.4172/2167-7700.1000131

  33. Klein M, Swinnen S, Thevelein JM, Nevoigt E (2017) Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol 19:878–893. https://doi.org/10.1111/1462-2920.13617

    Article  CAS  PubMed  Google Scholar 

  34. Silvers MA, Deja S, Singh N, Egnatchik RA, Sudderth J, Luo X et al (2017) The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1 pancreatic cancer cells, causing perturbation in central carbon metabolism. J Biol Chem 292:18203–18216. https://doi.org/10.1074/jbc.M117.813923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ivnitski-steele I, Holmes AR, Lamping E, Monk BC, Richard D, Sklar LA (2009) Identification of nile red as a fluorescent substrate of the Candida albicans ABC transporters Cdr1p and Cdr2p and the MFS transporter Mdr1p. Anal Biochem 394:87–91. https://doi.org/10.1016/j.ab.2009.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:1–10. https://doi.org/10.3389/fmicb.2012.00286

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Universidade Estácio de Sá (UNESA) − Bolsa de Pesquisa Produtividade. This study was also financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior– Brazil (CAPES)– Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

DCDM: Conception and design of the study; acquisition, analysis and interpretation of data; drafting the article. RR-P: acquisition of data, critical revision of the article. MDCFRP: acquisition of data. LTSD: acquisition of data. EB-B: final approval of the version to be submitted. AF-P: conception and design of the study; critical revision of the article and final approval of the version to be submitted.

Corresponding author

Correspondence to Antonio Ferreira-Pereira.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Responsible Editor: Celia Maria de Almeida Soares.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes, D.C., Rollin-Pinheiro, R., Pinto, M.d.C.F.R. et al. Antifungal activity of β-lapachone against a fluconazole-resistant Candida auris strain. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01375-1

Keywords

Navigation