Skip to main content
Log in

Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Nucleotide sequences were submitted to the NCBI Sequence Read Archive (SRA) under the BioProject accession number PRJNA691689. Sequences have also been deposited in the MG-RAST database (http://metagenomics.anl.gov).

References

  1. Tarnocai C (1980) Summer temperatures of cryosolic soils in the north-central Keewatin, NWT. Can J Soil Sci 60(2):311–327

    Article  Google Scholar 

  2. Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27(4):219–225

    Article  PubMed  Google Scholar 

  3. Jansson JK, Taş N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12(6):414–425

    Article  CAS  PubMed  Google Scholar 

  4. Anesio AM, Lutz S, Chrismas NA, Benning LG (2017) The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3(1):1–11

    Article  Google Scholar 

  5. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13(11):677–690

    Article  CAS  PubMed  Google Scholar 

  6. Hotaling S, Finn DS, Giersch J, Weisrock J, D. W., Jacobsen D (2017) Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biol Rev 92(4):2024–2045

    Article  PubMed  Google Scholar 

  7. Martin A, McMinn A (2018) Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol 17(1):1–16

    Article  Google Scholar 

  8. Hu H, Wang G, Liu G, Li T, Ren D, Wang Y, Wang J (2009) Influences of alpine ecosystem degradation on soil temperature in the freezing-thawing process on Qinghai–Tibet Plateau. Environ Geol 57(6):1391–1397

    Article  Google Scholar 

  9. Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, Vincent C (2018) The European Mountain Cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12(2):759–794

    Article  Google Scholar 

  10. Bibi S, Wang L, Li X, Zhou J, Chen D, Yao T (2018) Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int J Climatol 38:e1–e17

    Article  Google Scholar 

  11. Wu X, Chauhan A, Layton AC, Lau Vetter MC, Stackhouse BT, Williams DE, Vishnivetskaya TA (2021) Comparative metagenomics of the active layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. Environmental science & technology

  12. Dimri D, Baranwal M, Biswas U, India K (1983) Indian Minerals, 37(2), 39–46

    Google Scholar 

  13. Ye M, Zhang Z, Sun M, Shi Y (2022) Dynamics, gene transfer, and ecological function of intracellular and extracellular DNA in environmental microbiome. iMeta, 1(3), e34

  14. Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of’omics’ in soil microbial ecology. Nat Rev Microbiol 13(7):439–446

    Article  CAS  PubMed  Google Scholar 

  15. Aliyu H, De Maayer P, Sjöling S, Cowan DA (2017) Metagenomic analysis of low-temperature environments. Psychrophiles: from biodiversity to biotechnology. Springer, Cham, pp 389–421

    Chapter  Google Scholar 

  16. Jansson JK, Baker ES (2016) A multi-omic future for microbiome studies. Nat Microbiol 1:16049

    Article  CAS  PubMed  Google Scholar 

  17. Nikrad MP, Kerkhof LJ, Häggblom MM (2016) The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol 92(6):fiw081

    Article  PubMed  Google Scholar 

  18. Raymond-Bouchard I, Whyte LG (2017) From transcriptomes to metatranscriptomes: cold adaptation and active metabolisms of psychrophiles from cold environments. Psychrophiles: from biodiversity to biotechnology. Springer, Cham, pp 437–457

    Chapter  Google Scholar 

  19. Raina AN (1977) Geography of Jammu and Kashmir. National Book Trust, New Delhi, p 271

    Google Scholar 

  20. Thayyen RJ, Dimri AP, Kumar P, Agnihotri G (2013) Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010. Nat Hazards 65(3):2175–2204

    Article  Google Scholar 

  21. Lone SA, Jeelani G, Deshpande RD, Mukherjee A (2019) Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin, Ladakh. Atmos Res 221:46–57

    Article  Google Scholar 

  22. Bhattacharyya A (1989) Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeogr Palaeoclimatol Palaeoecol 73(1–2):25–38

    Article  Google Scholar 

  23. Philip G, Mazari R (2000) Shrinking lake basins in the proximity of the Indus Suture Zone of northwestern Himalaya: a case study of Tso Kar and Startsapuk Tso, using 1RS-1 C data. Int J Remote Sens 21(16):2973–2984

    Article  Google Scholar 

  24. Wünnemann B, Reinhardt C, Kotlia BS, Riedel F (2008) Observations on the relationship between lake formation, permafrost activity and lithalsa development during the last 20 000 years in the Tso Kar Basin, Ladakh, India. Permafrost Periglac Process 19(4):341–358

    Article  Google Scholar 

  25. Wani JM, Thayyen RJ, Ojha CSP, Gruber S (2021) The surface energy balance in a cold and arid permafrost environment, Ladakh, Himalayas, India. Cryosphere 15(5):2273–2293

    Article  Google Scholar 

  26. Tripathi BM, Kim M, Kim Y, Byun E, Yang JW, Ahn J, Lee YK (2018) Variations in bacterial and archaeal communities along depth profiles of alaskan soil cores. Sci Rep 8(1):1–11

    Article  Google Scholar 

  27. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  28. Kjeldahl C (1883) A new method for the determination of nitrogen in organic matter. Z Anal Chem 22:366

    Article  Google Scholar 

  29. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture

  30. Merwin HD, Peech M (1951) Exchangeability of soil potassium in the sand, silt, and clay fractions as influenced by the nature of the complementary exchangeable cation. Soil Sci Soc Am J 15(C):125–128

    Article  CAS  Google Scholar 

  31. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  32. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  33. Gruber S, Fleiner R, Guegan E, Panday P, Schmid M-O, Stumm D, Wester P, Zhang Y, Zhao L (2017) Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. The Cryosphere 11, no. 1: 81–99

  34. Wani JM, Thayyen RJ, Gruber S, Ojha CSP, Stumm D (2020) Single-year thermal regime and inferred permafrost occurrence in the upper Ganglass catchment of the cold-arid Himalaya, Ladakh, India. Sci Total Environ 703:134631

    Article  CAS  PubMed  Google Scholar 

  35. Meyer F, Paarmann D, D’Souza M, Olson R, M Glass E, Kubal M, Edwards R (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9(1):1–8

    Article  Google Scholar 

  36. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. https://doi.org/10.1038/s41596-019-0264-1)

    Article  PubMed  Google Scholar 

  39. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), e61217

  40. Bluman A (2014) Elementary Statistics: A step by step approach 9e. McGraw Hill

  41. Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proceedings of the national academy of sciences, 104(36), 14401–14405

  42. Leewis, M. C., Berlemont, R., Podgorski, D. C., Srinivas, A., Zito, P., Spencer, R.G.,… Mackelprang, R. (2020). Life at the frozen limit: microbial carbon metabolism across a late Pleistocene permafrost chronosequence. Frontiers in microbiology, 11, 530670

  43. Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4(9):1206–1214

    Article  CAS  PubMed  Google Scholar 

  44. Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50(1):13–23

    Article  CAS  PubMed  Google Scholar 

  45. Liebner S, Harder J, Wagner D (2008) Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int Microbiol 11(3):195–202

    CAS  PubMed  Google Scholar 

  46. Wagner D, Kobabe S, Liebner S (2009) Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Canadian journal of microbiology, 55(1), 73–83. Wu, X., Xu, H., Liu, G., Ma, X., Mu, C. & Zhao, L. (2017). Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Applied Soil Ecology, 120, 81–88

  47. Wu X, Xu H, Liu G, Ma X, Mu C, Zhao L (2017) Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Appl Soil Ecol 120:81–88

    Article  Google Scholar 

  48. Alekseev I, Zverev A, Abakumov E (2020) Microbial communities in permafrost soils of Larsemann Hills, eastern Antarctica: environmental controls and effect of human impact. Microorganisms 8(8):1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3(3):340–351

    Article  CAS  PubMed  Google Scholar 

  50. Coolen MJ, Orsi WD (2015) The transcriptional response of microbial communities in thawing alaskan permafrost soils. Front Microbiol 6:197

    Article  PubMed  PubMed Central  Google Scholar 

  51. Strauss J, Laboor S, Schirrmeister L, Fedorov AN, Fortier D, Froese D, Grosse G (2021) Circum-Arctic map of the Yedoma permafrost domain. Front Earth Sci 9:758360

    Article  Google Scholar 

  52. Liu X, Cong J, Lu H, Xue Y, Wang X, Li D, Zhang Y (2017) Community structure and elevational distribution pattern of soil Actinobacteria in alpine grasslands. Acta Ecol Sin 37(4):213–218

    Article  CAS  Google Scholar 

  53. Sul WJ, Asuming-Brempong S, Wang Q, Tourlousse DM, Penton CR, Deng Y, Tiedje JM (2013) Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol Biochem 65:33–38

    Article  CAS  Google Scholar 

  54. Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42(6):896–903

    Article  CAS  Google Scholar 

  55. Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M.,… Zhou, J. (2015). Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in A laska. Molecular ecology, 24(1), 222–234

  56. Kim HM, Lee MJ, Jung JY, Hwang CY, Kim M, Ro HM, Lee YK (2016) Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. J Microbiol 54:713–723

    Article  CAS  PubMed  Google Scholar 

  57. Burkert A, Douglas TA, Waldrop MP, Mackelprang R (2019) Changes in the active, dead, and dormant microbial community structure across a pleistocene permafrost chronosequence. Appl Environ Microbiol 85(7):e02646–e02618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40(W1):W88–W95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Warren G, Corotto L, Wolber P (1986) Conserved repeats in diverged ice nucleation structural genes from two species of Pseudomonas. Nucleic Acids Res 14(20):8047–8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hazra A, Saha M, De UK, Mukherjee J, Goswami K (2004) Study of ice nucleating characteristics of Pseudomonas aeruginosa. J Aerosol Sci 35(11):1405–1414

    Article  CAS  Google Scholar 

  61. Singh P, Singh SM, Singh RN, Naik S, Roy U, Srivastava A, Bölter M (2017) Bacterial communities in ancient permafrost profiles of Svalbard, Arctic. J Basic Microbiol 57(12):1018–1036

    Article  CAS  PubMed  Google Scholar 

  62. Monciardini P, Cavaletti L, Schumann P, Rohde M, Donadio S (2003) Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol MicroBiol 53(2):569–576

    Article  CAS  PubMed  Google Scholar 

  63. Pukall R, Lapidus A, Del Rio TG, Copeland A, Tice H, Cheng JF, Hugenholtz P (2010) Complete genome sequence of Conexibacter woesei type strain (ID131577 T). Stand Genomic Sci 2(2):212–219

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. Nov. Int J Syst Evol MicroBiol 53(4):1155–1163

    Article  CAS  PubMed  Google Scholar 

  65. Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57(4):303–315

    Article  CAS  PubMed  Google Scholar 

  66. Schostag M, Priemé A, Jacquiod S, Russel J, Ekelund F, Jacobsen CS (2019) Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. ISME J 13(5):1345–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adamczyk M, Rüthi J, Frey B (2021) Root exudates increase soil respiration and alter microbial community structure in alpine permafrost and active layer soils. Environ Microbiol 23(4):2152–2168

    Article  PubMed  Google Scholar 

  68. Aszalós JM, Szabó A, Megyes M, Anda D, Nagy B, Borsodi AK (2020) Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos Del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20(6):754–765

    Article  PubMed  Google Scholar 

  69. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ, Xie B, Lv J (2014) Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie Van Leeuwenhoek 105:971–978

    Article  CAS  PubMed  Google Scholar 

  70. Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55(1):21–36

    Article  CAS  PubMed  Google Scholar 

  71. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li L, Qu Z, Wang B, Jia R, Qu D (2019) The response of metabolically active Clostridium community to initial pH shift is closely correlated with microbial Fe (III) reduction in flooded paddy soils. J Soils Sediments 19(2):522–532

    Article  CAS  Google Scholar 

  73. Lubsanova DA, Zenova GM, Kozhevin PA, Manucharova NA, Shvarov AP (2014) Filamentous Actinobacteria of the saline soils of arid territories. Mosc Univ soil Sci Bull 69(2):88–92

    Article  Google Scholar 

  74. Sayed AM, Hassan MH, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME (2020) Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 128(3):630–657

    Article  CAS  PubMed  Google Scholar 

  75. Fritze H, Pietikäinen J, Pennanen T (2000) Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur J Soil Sci 51(4):565–573

    Article  CAS  Google Scholar 

  76. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35(1):167–176

    Article  CAS  Google Scholar 

  77. Yang SS, Fan HY, Yang CK, Lin IC (2003) Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere 52(9):1489–1498

    Article  CAS  PubMed  Google Scholar 

  78. Lawson PA, Song Y, Liu C, Molitoris DR, Vaisanen ML, Collins MD, Finegold SM (2004) Anaerotruncus colihominis gen. nov., sp. nov., from human faeces. Int J Syst Evol MicroBiol 54(2):413–417

    Article  CAS  PubMed  Google Scholar 

  79. Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK (2012) Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 3:50

    Article  PubMed  PubMed Central  Google Scholar 

  80. Estop-Aragonés C, Cooper MD, Fisher JP, Thierry A, Garnett MH, Charman DJ, Hartley IP (2018) Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol Biochem 118:115–129

    Article  Google Scholar 

  81. Liang, R., Li, Z., Lau Vetter, M. C., Vishnivetskaya, T. A., Zanina, O. G., Lloyd,K. G.,… Onstott, T. C. (2021). Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost. Microbiome, 9, 1–20

  82. Lipson DA, Haggerty JM, Srinivas A, Raab TK, Sathe S, Dinsdale EA (2013) Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS ONE, 8(5), e64659

  83. Zhang W, Bahadur A, Zhang G, Zhang B, Wu X, Chen T, Liu G (2020) Diverse Bacterial Communities from Qaidam Basin of the Qinghai–Tibet Plateau: Insights Into Variations in Bacterial Diversity Across Different Regions. Frontiers in microbiology, 11, 554105.Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M. O., Stumm, D. & Zhao, L. (2017). Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. The Cryosphere, 11(1), 81–99

  84. Welte CU (2018) Revival of archaeal methane microbiology. Msystems 3(2):e00181–e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mitzscherling, J., Horn, F., Winterfeld, M., Mahler, L., Kallmeyer, J., Overduin,P. P.,… Liebner, S. (2019). Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosciences, 16(19), 3941–3958

  86. Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim et Biophys Acta (BBA)-Bioenergetics 1837(7):1130–1147

    Article  CAS  Google Scholar 

  87. Schaechter M (2009) Encyclopedia of microbiology. Academic

  88. Mah RA, Hungate RE, Ohwaki K (1977) Acetate, a key intermediate in methanogenesis. Microbial Energy Conversion. Pergamon, pp 97–106

  89. Ferry JG, Lessner DJ (2008) Methanogenesis in marine sediments. Ann N Y Acad Sci 1125(1):147–157

    Article  CAS  PubMed  Google Scholar 

  90. Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59(2):476–488

    Article  CAS  PubMed  Google Scholar 

  91. Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 53(1):3–13

    Article  CAS  PubMed  Google Scholar 

  92. Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82(2):287–302

    Article  CAS  PubMed  Google Scholar 

  93. Frank-Fahle BA, Yergeau É, Greer CW, Lantuit H, Wagner D (2014) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS ONE, 9(1), e84761

  94. Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7(10):1582–1592

    Article  CAS  PubMed  Google Scholar 

  95. Koch K, Knoblauch C, Wagner D (2009) Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the siberian Laptev Sea. Environ Microbiol 11(3):657–668

    Article  CAS  PubMed  Google Scholar 

  96. Song Y, Chen L, Kang L, Yang G, Qin S, Zhang Q, Yang Y (2021) Methanogenic community, CH4 production potential and its determinants in the active layer and permafrost deposits on the Tibetan Plateau. Environ Sci Technol 55(16):11412–11423

    Article  CAS  Google Scholar 

  97. Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner SM, Jansson JK (2012) Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 6(4):709–712

    Article  CAS  PubMed  Google Scholar 

  98. Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer EM (2018) Methane production as key to the greenhouse gas budget of thawing permafrost. Nat Clim Change 8(4):309–312

    Article  CAS  Google Scholar 

  99. Christensen TR, Michelsen A, Jonasson S, Schmidt IK (1997) Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations. Oikos, 34–44

  100. Conrad R, Klose M (2006) Dynamics of the methanogenic archaeal community in anoxic rice soil upon addition of straw. Eur J Soil Sci 57(4):476–484

    Article  Google Scholar 

  101. Parshina SN, Ermakova AV, Bomberg M, Detkova EN (2014) Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature. Int J Syst Evol MicroBiol 64(Pt1):180–186

    Article  CAS  PubMed  Google Scholar 

  102. Vishnivetskaya TA, Buongiorno J, Bird J, Krivushin K, Spirina EV, Oshurkova V, Rivkina EM (2018) Methanogens in the Antarctic dry valley permafrost. FEMS Microbiol Ecol 94(8):fiy109

    Article  CAS  Google Scholar 

  103. Conrad R, Schütz H, Babbel M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol Ecol 3(5):281–289

    Article  Google Scholar 

  104. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7(12):1985–1995

    Article  CAS  PubMed  Google Scholar 

  105. Colliver BB, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18(3):219–232

    Article  CAS  PubMed  Google Scholar 

  106. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews Microbiol 55(1):485–529

    Article  CAS  Google Scholar 

  107. Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8(2):214–222

    Article  CAS  PubMed  Google Scholar 

  108. Monteux S, Keuper F, Fontaine S, Gavazov K, Hallin S, Juhanson J, Dorrepaal E (2020) Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations. Nat Geosci 13(12):794–798

    Article  CAS  Google Scholar 

  109. Könneke M, Bernhard AE, José R, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546

    Article  PubMed  Google Scholar 

  110. Van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475(7355):214–216

    Article  PubMed  Google Scholar 

  111. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805–814

    Article  CAS  PubMed  Google Scholar 

  112. Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18(1):35–46

    Article  CAS  PubMed  Google Scholar 

  113. Ottoni JR, de Oliveira VM, Passarini MRZ (2022) Microbes in thawing permafrost: contributions to climate change. Microbiome under changing climate. Woodhead Publishing, pp 1–28

  114. Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Lazrus A (1995) Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim Cosmochim Acta 59(17):3663–3668

    Article  CAS  Google Scholar 

  115. Ström L, Ekberg A, Mastepanov M, Røjle Christensen T (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9(8):1185–1192

    Article  Google Scholar 

  116. Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5(4):e01371–e01314

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70(10):6147–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ptacnik R, Solimini AG, Andersen T, Tamminen T, Brettum P, Lepistö L, Rekolainen S (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc Natl Acad Sci 105(13):5134–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xue Y, Jonassen I, Øvreås L, Taş N (2019) Bacterial and archaeal metagenome-assembled genome sequences from Svalbard permafrost. Microbiol Resource Announcements 8(27):10–1128

    Article  Google Scholar 

  120. Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431(7007):440–443

    Article  CAS  PubMed  Google Scholar 

  121. Aerts R (2010) Nitrogen-dependent recovery of subarctic tundra vegetation after simulation of extreme winter warming damage to Empetrum hermaphroditum. Glob Change Biol 16(3):1071–1081

    Article  Google Scholar 

  122. Liang R, Lau M, Vishnivetskaya T, Lloyd KG, Wang W, Wiggins J, Onstott TC (2019) Predominance of anaerobic, spore-forming bacteria in metabolically active microbial communities from ancient siberian permafrost. Appl Environ Microbiol 85(15):e00560–e00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rustad LEJL, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562

    Article  CAS  PubMed  Google Scholar 

  124. Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242(1):93–106

    Article  CAS  Google Scholar 

  125. Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36(2):217–227

    Article  CAS  Google Scholar 

  126. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plants and climate change. Springer, Dordrecht, pp 65–78

    Chapter  Google Scholar 

  127. Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59(2):428–435

    Article  CAS  PubMed  Google Scholar 

  128. Chong CW, Pearce DA, Convey P, Tan GA, Wong RC, Tan IK (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biol Biochem 42(4):601–610

    Article  CAS  Google Scholar 

  129. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12(11):2998–3006

    Article  CAS  PubMed  Google Scholar 

  130. Zinger L, Lejon DP, Baptist F, Bouasria A, Aubert S, Geremia RA, Choler P (2011) Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS ONE, 6(5), e19950

  131. Lin X, Green S, Tfaily MM, Prakash O, Konstantinidis KT, Corbett JE, Kostka JE (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and Fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microbiol 78(19):7023–7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351

    Article  PubMed  Google Scholar 

  133. Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, Bu R (2018) Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep 8(1):1–10

    Article  Google Scholar 

  134. Malard LA, Anwar MZ, Jacobsen CS, Pearce DA (2019) Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol Ecol 95(9):fiz128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stres B, Sul WJ, Murovec B, Tiedje JM (2013) Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper Troposphere. PLoS ONE, 8(9), e76440

  136. White III, Power RA, Dipple IM, Southam GM, G., Suttle CA (2015) Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front Microbiol 6:966

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sampling in this region was done with the permission from Wildlife Protection Department, UT Ladakh. The authors would like to thank Chief Wildlife Warden, Wildlife Protection Department, Ladakh and Wildlife Warden, Leh for granting permission to collect samples from this region. Also, thank UGC for providing fellowship to Ahmad Ali during the study.

Funding

The study was funded by the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) project under the grant number ECR/2016/000698. TAV was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science Program under award number DE-SC0020369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Chauhan.

Ethics declarations

Competing interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Editorial Responsibility: Marcelo Gonzalez Aravena.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Vishnivetskaya, T.A. & Chauhan, A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01365-3

Keywords

Navigation