Skip to main content
Log in

Phylum-level studies of bacterial cutinases for unravelling enzymatic specificity toward PET degradation: an in silico approach

  • Environmental and Biodiversity - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The overwhelming use of PET plastic in various day-to-day activities led to the voluminous increase in PET waste and growing environmental hazards. A plethora of methods have been used that are associated with secondary pollutants. Therefore, microbial degradation of PET provides a sustainable approach due to its versatile metabolic diversity and capacity. The present work highlights the cutinase enzyme's role in PET degradation. This study focuses on the bacterial cutinases homologs screened from 43 reported phylum of bacteria. The reported bacterial cutinases for plastic degradation have been chosen as reference sequences, and 917 sequences have shown homology across the bacterial phyla. The dienelactone hydrolase (DLH) domain was identified for attaining specificity towards PET binding in 196 of 917 sequences. Various computational tools have been used for the physicochemical characterization of 196 sequences. The analysis revealed that most selected sequences are hydrophilic, extracellular, and thermally stable. Based on this analysis, 17 sequences have been further pursued for three-dimensional structure prediction and validation. The molecular docking studies of 17 selected sequences revealed efficient PET binding with the three sequences derived from the phylum Bacteroidota, the lowest binding energy of -5.9 kcal/mol, Armatimonadota, and Nitrososphaerota with -5.8 kcal/mol. The two enzyme sequences retrieved from the phylum Bacteroidota and Armatimonadota are metagenomically derived. Therefore, the present studies concluded that there is a high probability of finding cutinase homologs in various environmental resources that can be further explored for PET degradation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data associated with the paper is not available.

References

  1. Askar MK, Al-Kamaki YS, Hassan A (2023) Utilizing polyethylene terephthalate PET in concrete: a review. Polymers 15:3320. https://doi.org/10.3390/polym15153320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bałazińska M, Kruczek M, Bondaruk J (2021) The environmental impact of various forms of waste PET bottle management. Int J Sustain Dev 28:473–480. https://doi.org/10.1080/13504509.2020.1865473

    Article  Google Scholar 

  3. Saabome SM, Lee JE, Hong JS, Kim DH, Ahn KH (2023) Mechanical degradation of poly (ethylene terephthalate) and its structural modification by chain extender. Korea Aust Rheol J 35:203–212. https://doi.org/10.1007/s13367-023-00059-w

    Article  Google Scholar 

  4. Wang R, Chen X, Li Q, Zhang A, Ma G, Wei Y, Qu M, Gao L, Wei J (2023) Solvothermal preparation of nitrogen and phosphorus-doped carbon dots with PET waste as a precursor and its application. Mater Today Commun 34:104918. https://doi.org/10.1016/j.mtcomm.2022.104918

    Article  CAS  Google Scholar 

  5. Golubeva M, Mukhtarova M, Sadovnikov A, Maximov A (2023) PET waste recycling into BTX fraction using in situ obtained nickel phosphide. Polymers 15:2248. https://doi.org/10.3390/polym15102248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaerer LG, Wu R, Putman LI, Pearce JM, Lu T, Shonnard DR, Ong RG, Techtmann SM (2023) Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food. Trends Biotechnol 41:184–196. https://doi.org/10.1016/j.tibtech.2022.06.012

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199. https://doi.org/10.1126/science.aad6359

    Article  CAS  PubMed  Google Scholar 

  8. Carniel A, Valoni É, Junior JN, da Conceição GA, de Castro AM (2017) Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem 59:84–90. https://doi.org/10.1016/j.procbio.2016.07.023

    Article  CAS  Google Scholar 

  9. Din SU, Kalsoom SSM, Uddin S, Mankar SV, Ceylan E, Hasan F, Khan S, Badshah M, Beldüz AO, Çanakçi S et al (2023) The Purification and Characterization of a Cutinase-like Enzyme with Activity on Polyethylene Terephthalate (PET) from a Newly Isolated Bacterium Stenotrophomonas maltophilia PRS8 at a Mesophilic Temperature. Appl Sci 13:3686. https://doi.org/10.3390/app13063686

    Article  CAS  Google Scholar 

  10. von Haugwitz G, Han X, Pfaff L, Li Q, Wei H, Gao J, Methling K, Ao Y, Brack Y, Mican J, Feiler CG (2022) Structural insights into (tere) phthalate-ester hydrolysis by a carboxylesterase and its role in promoting PET depolymerization. ACS Catal 12:15259–15270. https://doi.org/10.1021/acscatal.2c03772

    Article  CAS  Google Scholar 

  11. Zhang H, Perez-Garcia P, Dierkes RF, Applegate V, Schumacher J, Chibani CM, Sternagel S, Preuss L, Weigert S, Schmeisser C, Danso D et al (2022) The Bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity. Front Microbiol 12:803896. https://doi.org/10.3389/fmicb.2021.803896

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vázquez-Alcántara L, Oliart-Ros RM, García-Bórquez A, Peña-Montes C (2021) Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiol Spectr 9:e00976-e1021. https://doi.org/10.1128/Spectrum.00976-21

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460. https://doi.org/10.1128/aem.62.2.456-460.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitadokoro K, Kakara M, Matsui S, Osokoshi R, Thumarat U, Kawai F, Kamitani S (2019) Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase. FEBS J 286:2087–2098. https://doi.org/10.1111/febs.14781

    Article  CAS  PubMed  Google Scholar 

  15. Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240. https://doi.org/10.1007/s00253-011-3402-4

    Article  CAS  PubMed  Google Scholar 

  16. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562. https://doi.org/10.1128/AEM.06725-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oren A, Garrity GM (2021) Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol 71:005056. https://doi.org/10.1099/ijsem.0.005056

    Article  Google Scholar 

  18. Oren A, Mareš J, Rippka R (2022) Validation of the names Cyanobacterium and Cyanobacterium stanieri, and proposal of Cyanobacteriota phyl. Nov Int J Syst Evol 72:005528. https://doi.org/10.1099/ijsem.0.005528

    Article  CAS  Google Scholar 

  19. Altschul S, Madden TL et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Almeida EL, Rincón AFC, Jackson SA, Dobson ADW (2019) In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front Microbiol 10:2187. https://doi.org/10.3389/fmicb.2019.02187

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977

    Article  CAS  PubMed  Google Scholar 

  22. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19:271–273. https://doi.org/10.1038/cr.2009.6

    Article  CAS  PubMed  Google Scholar 

  23. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:W39–W49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The Proteomics Protocols Handbook, Humana Press, Totowa, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571

  27. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11:681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    Article  CAS  Google Scholar 

  28. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514. https://doi.org/10.1093/nar/gkp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Colovos C, Yeates TO (1993) Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. In: Carter Jr CW, Sweet RM (eds) Methods in Enzymology. Elsevier, Amsterdam, pp 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8

  31. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  32. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S et al (2023) PubChem 2023 update. Nucleic Acids Res 51:D1373–D1380. https://doi.org/10.1093/nar/gkac956

    Article  PubMed  Google Scholar 

  33. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J Cheminformatics 3:1–14. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  34. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7%3c720::AID-JCC7%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshida S, Hiraga K, Taniguchi I, Oda K (2021) Ideonella sakaiensis, PETase, and MHETase: from identification of microbial PET degradation to enzyme characterization. In: Weber G, Bornscheuer UT, Wei R (eds) Methods in Enzymology. Elsevier, Amsterdam, pp 187–205. https://doi.org/10.1016/bs.mie.2020.12.007

  38. Zhang H, Dierkes RF, Perez-Garcia P, Costanzi E, Dittrich J, Cea PA, Gurschke M, Applegate V, Partus K, Schmeisser C, Pfleger C et al (2023) The metagenome-derived esterase PET40 is highly promiscuous and hydrolyses polyethylene terephthalate (PET). FEBS J. https://doi.org/10.1111/febs.16924

    Article  PubMed  Google Scholar 

  39. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL (1992) The α/β hydrolase fold. Protein Eng Des Sel 5:197–211. https://doi.org/10.1093/protein/5.3.197

    Article  CAS  Google Scholar 

  40. Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737. https://doi.org/10.1016/s0959-440x(99)00037-8

    Article  CAS  PubMed  Google Scholar 

  41. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci USA 115:E4350–E4357. https://doi.org/10.1073/pnas.1718804115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maity W, Maity S, Bera S, Roy A (2021) Emerging roles of PETase and MHETase in the biodegradation of plastic wastes. Appl Biochem Biotechnol 193:2699–2716. https://doi.org/10.1007/s12010-021-03562-4

    Article  CAS  PubMed  Google Scholar 

  43. Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4:155–161. https://doi.org/10.1093/protein/4.2.155

    Article  CAS  Google Scholar 

  44. Flores-Castañón N, Sarkar S, Banerjee A (2022) Structural, functional, and molecular docking analyses of microbial cutinase enzymes against polyurethane monomers. J Hazard Mater Lett 3:100063. https://doi.org/10.1016/j.hazl.2022.100063

    Article  CAS  Google Scholar 

  45. Gambarini V, Pantos O, Kingsbury JM, Weaver L, Handley KM, Lear G (2021) Phylogenetic distribution of plastic-degrading microorganisms. mSystems 6:10–1128. https://doi.org/10.1128/msystems.01112-20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support of Gautam Buddha University (Greater Noida) and Jawaharlal Nehru University for writing this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Barkha Singhal conceptualized the idea and wrote the manuscript. Shubham Kumar has performed in silico studies using various computational software to study bacterial cutinases' structural and functional aspects. Bhupendra Chaudhary performed a detailed analysis of the phylogenetic relationship of bacterial cutinases.

Corresponding author

Correspondence to Barkha Singhal.

Ethics declarations

Ethics approval

Not Applicable.

Consent for publication

Yes.

Competing interests

Authors have no competing interest in publishing this manuscript.

Additional information

Responsible Editor: Lucy Seldin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

42770_2024_1362_MOESM1_ESM.docx

Supplementary file1 (DOCX 122 KB) Table S1 A preliminary data of 196 sequences of cutinase retrieved from 43 different bacterial phyla.

42770_2024_1362_MOESM2_ESM.pdf

Supplementary file2 (PDF 227 KB) Fig. S1 Multiple sequence alignment of selected 196 bacterial cutinase enzyme sequences

42770_2024_1362_MOESM3_ESM.tif

Supplementary file3 (TIF 397 KB) Fig. S2 Interaction of 14 cutinase sequences out of 17 selected sequences with ligand PET through molecular docking

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Chaudhary, B. & Singhal, B. Phylum-level studies of bacterial cutinases for unravelling enzymatic specificity toward PET degradation: an in silico approach. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01362-6

Keywords

Navigation