Skip to main content

Advertisement

Log in

Pathogenic potential of an environmental Aspergillus fumigatus strain recovered from soil of Pygoscelis papua (Gentoo penguins) colony in Antarctica

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aspergillus fumigatus is a common opportunistic pathogen in different animals, including birds such as penguins. For the first time, a fungal strain identified as A. fumigatus was isolated from soil in the nests of gentoo penguins, Pygoscelis papua, on Livingston Island, South Shetland Islands (maritime Antarctica). This isolate (A. fumigatus UFMGCB 11829) displayed a series of potentially pathogenic characteristics in vitro. We evaluated its detailed molecular taxonomy and submitted the A. fumigatus UFMGCB 11829 Antarctic strain to in vivo pathogenic modelling. The isolate was confirmed to represent A. fumigatus morphological and phylogenetic analysis showed that it was closely related to A. fumigatus sequences reported from animals, immunosuppressed humans, storage grains, plants and soils. The strain displayed the best mycelial growth and conidia production at 37 ºC; however, it was also able to grow and produce conidia at 15º, demonstrating its capability to survive and colonize penguin nest at least in the summer season in maritime Antarctica. In pathogenicity tests, healthy mice did not showed symptoms of infection; however, 50% lethality was observed in immunosuppressed mice that were inoculated with 106 and 107 spores. Lethality increased to 100% when inoculated with 108 spores. Our data highlight the potential pathogenicity of opportunistic A. fumigatus that may be present in the Antarctic, and the risks of both their further transfer within Antarctica and outwards to other continents, risks which may be exacerbated due global climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this publish article.

References

  1. Dagenais TRT, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447465. https://doi.org/10.1128/CMR.00055-08

    Article  CAS  Google Scholar 

  2. Alvarez-Perez S, Mateos A, Dominguez L, Martinez-Nevado E, Blanco JL, Garcia ME (2010) Polyclonal Aspergillus fumigatus infection in captive penguins. Vet Microbiol 144:444–449. https://doi.org/10.1016/j.vetmic.2010.02.026

    Article  PubMed  Google Scholar 

  3. Crameri R, Garban M, Rhyner C, Huitema C (2014) Fungi: the neglected allergenic sources. Allergy 69:176–185. https://doi.org/10.1111/all.12325

    Article  CAS  PubMed  Google Scholar 

  4. Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, Greenberger PA, Kariuki B, Kita H, Kurup VP, Moss RB, Niven RM, Pashley CH, Slavin RG, Vijay HM, Wardlaw AJ (2012) Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 129:280–291. https://doi.org/10.1016/j.jaci.2011.12.970

    Article  PubMed  Google Scholar 

  5. Rosa LH, Zani CL, Cantrell CL, Duke SO, Van Dijck P, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Berlin, pp 1–17

    Chapter  Google Scholar 

  6. Rosa LH, da Silva TH, Ogaki MB, Pinto OHB, Stech M, Convey P, Carvalho-Silva M, Rosa CA, Câmara PE (2020) DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep 10:1–9

    Article  Google Scholar 

  7. Alves IM, Gonçalves VN, Oliveira FS, Schaefer CE, Rosa CA, Rosa LH (2019) The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica. Extremophiles 23:327–336. https://doi.org/10.1007/s00792-019-01086-8

    Article  PubMed  Google Scholar 

  8. de Sousa JR, Goncalves VN, de Holanda RA, Santos DA, Bueloni CF, Costa AO, Petry MV, Rosa CA, Rosa LH (2017) Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol 121:991–1000. https://doi.org/10.1016/j.funbio.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  9. Gonçalves VN, Oliveira FS, Carvalho CR, Schaefer CEGR, Rosa CA, Rosa LH (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860. https://doi.org/10.1007/s00792-017-0947-x

    Article  PubMed  Google Scholar 

  10. Rosa LH, de Sousa JRP, de Menezes GCA, da Costa CL, Carvalho-Silva M, Convey P, Câmara PEAS (2020) Opportunistic fungal assemblages present on fairy rings spread on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596

    Article  Google Scholar 

  11. da Silva TH, Queres Gomes EC, Gonçalves VN, da Costa MC, Valério AD, de Assis SD, Johann S, Convey P, Rosa CA, Rosa LH (2022) Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? Fungal Biol 126:488–497. https://doi.org/10.1016/j.funbio.2022.04.003

    Article  CAS  PubMed  Google Scholar 

  12. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167. https://doi.org/10.1007/s00300-008-0515-z

  13. White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  14. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonçalves VN, Cantrell CL, Wedge DE, Ferreira MC, Soares MA, Jacob MR, Oliveira FS, Galante D, Rodrigues F, Alves TMA, Zani CL, Junior PAS, Murta S, Romanha AJ, Barbosa EC, Kroon EG, Oliveira JG, Gomez-Silva B, Galetovic A, Rosa CA, Rosa LH (2016) Fungi associated with rocks of the Atacama Desert. Environ Microbiol 18:232–245. https://doi.org/10.1111/1462-2920.13005

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Madden TL, Schafer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol and Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  18. Kornerup A, Wanscher JH (1984) Methuen handbook of colour, 3rd edn. Eyre Methuen, London

    Google Scholar 

  19. Ferreira GF, Santos JR, Costa MC, Holanda RA, Denadai AM, Freitas GJ, Santos AR, Tavares PB, Paixão TA, Santos DA (2015) Heteroresistance to itraconazole alters the morphology and increases the virulence of Cryptococcus gattii. Antimicrob Agents Chemother 59:4600–4609. https://doi.org/10.1128/AAC.00466-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. dos Santos Brito MM, da Silva Lima M, Morgado FN, Raibolt P, Menezes R, Conceição-Silva F, de Moraes Borba C (2011) Characteristics of Paecilomyces lilacinus infection comparing immunocompetent with immunosuppressed murine model. Mycoses 54:e513–e521. https://doi.org/10.1111/j.1439-0507.2010.01969.x

    Article  Google Scholar 

  21. Duarte-Escalante E, Frías-De-León MG, Martínez-Herrera E, Acosta-Altamirano G, Rosas de Paz E, Reséndiz-Sánchez J, Refojo N, Reyes-Montes MDR (2020) Identification of CSP types and genotypic variability of clinical and environmental isolates of Aspergillus fumigatus from different geographic origins. Microorganisms 8:688. https://doi.org/10.3390/microorganisms8050688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laut S, Poapolathep S, Piasai O, Sommai S, Boonyuen N, Giorgi M, Zhang Z, Fink-Gremmels J, Poapolathep A (2023) Storage fungi and mycotoxins associated with rice samples commercialized in Thailand. Foods 12:487. https://doi.org/10.3390/foods12030487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nafaa M, Rizk SM, Aly TA-GA, Rashed MA-S, Abd El-Moneim D, Ben Bacha A, Alonazi M, Magdy M (2023) Screening and identification of the Rhizosphere fungal communities associated with land reclamation in Egypt. Agriculture 13:215. https://doi.org/10.3390/agriculture13010215

    Article  CAS  Google Scholar 

  24. Figueredo HM, Gonçalves VN, Godinho VM, Lopes DV, Oliveira FS, Rosa LH (2020) Diversity and ecology of cultivable fungi isolated from the thermal soil gradients in Deception Island, Antarctica. Extremophiles 24:219–225. https://doi.org/10.1007/s00792-019-01146-z

    Article  CAS  PubMed  Google Scholar 

  25. Ellis DH (1980) Thermophilous fungi isolated from some Antarctic and sub-Antarctic soils. Mycologia 72:1033–1036. https://doi.org/10.1080/00275514.1980.12021277

    Article  Google Scholar 

  26. Brito Devoto T, Toscanini MA, Hermida Alava K, Etchecopaz AN, Pola SJ, Martorell MM, Ansaldo M, Negrete J, Ruberto L, Mac Cormack W, Cuestas ML (2022) Exploring fungal diversity in Antarctic wildlife: isolation and molecular identification of culturable fungi from penguins and pinnipeds. N Z Vet J 70:263–272. https://doi.org/10.1080/00480169.2022.2087784

    Article  CAS  PubMed  Google Scholar 

  27. Bhabhra R, Askew DS (2005) Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Medic Mycol 43:S87–S93. https://doi.org/10.1080/13693780400029486

    Article  CAS  Google Scholar 

  28. Latgé JP, Chamilos G (2019) Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev 33:e00140-e218. https://doi.org/10.1128/CMR.00140-18

    Article  PubMed  PubMed Central  Google Scholar 

  29. Person AK, Chudgar SM, Norton BL, Tong BC, Stout JE (2010) Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis. J Med Microbiol 59:834–838. https://doi.org/10.1099/jmm.0.018309-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Convey P, Coulson SJ, Worland MR, Sjöblom A (2018) The importance of understanding annual and shorter term temperature patterns and variation in the upper layers of polar soils for terrestrial biota. Polar Biol 41:1587–1605. https://doi.org/10.1007/s00300-018-2299-0

    Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from CNPq, CAPES, FNDCT, FAPEMIG, INCT Criosfera, PROANTAR. P. Convey is supported by NERC core funding to the British Antarctic Survey's ‘Biodiversity, Evolution and Adaptation’ Team.

Funding

CNPq, CAPES, FNDCT, FAPEMIG, INCT Criosfera, PROANTAR and NERC.

Author information

Authors and Affiliations

Authors

Contributions

LHR and VNG conceived the study. LHR collected the samples. VNG cultured and identified the fungus. VNG, SSA, MCC and DAS performed the in vivo experiments. PC analysed the results and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Competing interest

The authors have no competing interest to declare that are relevant to the content of this article.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, V.N., Amorim, S.S., da Costa, M.C. et al. Pathogenic potential of an environmental Aspergillus fumigatus strain recovered from soil of Pygoscelis papua (Gentoo penguins) colony in Antarctica. Braz J Microbiol 55, 1521–1528 (2024). https://doi.org/10.1007/s42770-024-01326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-024-01326-w

Keywords

Navigation