Skip to main content
Log in

High-risk clones of carbapenem resistant Klebsiella pneumoniae recovered from pediatric patients in Southern Brazil

  • Clinical Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Carbapenem-resistant Klebsiella pneumoniae (CRKP) exhibit high mortality rates in pediatric patients and usually belong to international high-risk clones. This study aimed to investigate the molecular epidemiology and carbapenem resistance mechanisms of K. pneumoniae isolates recovered from pediatric patients, and correlate them with phenotypical data. Twenty-five CRKP isolates were identified, and antimicrobial susceptibility was assessed using broth microdilution. Carbapenemase production and β-lactamase genes were detected by phenotypic and genotypic tests. Multilocus sequence typing was performed to differentiate the strains and whole-genome sequencing was assessed to characterize a new sequence type. Admission to the intensive care unit and the use of catheters were significantly positive correlates of CRKP infection, and the mortality rate was 36%. Almost all isolates showed multidrug-resistant phenotype, and most frequent resistant gene was blaKPC. We observed the dissemination of ST307 and clones belonging to CG258, which are considered high risk. In pediatric patients, these clones present with high genomic plasticity, favoring adaptation of the KPC and NDM enzymes to healthcare environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

The draft genome of Kpn10 was submitted to GenBank under the accession number JASEKY000000000.2.

References

  1. Zhang X, Chen D, Xu G, Huang W, Wang X (2018) Molecular epidemiology and drug resistant mechanism in carbapenem-resistant Klebsiella pneumoniae isolated from pediatric patients in Shanghai, China. PLoS One 13:e0194000. https://doi.org/10.1371/JOURNAL.PONE.0194000

    Article  PubMed  PubMed Central  Google Scholar 

  2. Palmeiro JK, de Souza RF, Schörner MA, Passarelli-Araujo H, Grazziotin AL, Vidal NM et al (2019) Molecular epidemiology of multidrug-resistant Klebsiella pneumoniae Isolates in a Brazilian Tertiary Hospital. Front Microbiol 10:1669. https://doi.org/10.3389/fmicb.2019.01669

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martins WMBS, Nicolas MF, Yu Y, Li M, Dantas P, Sands K et al (2020) Clinical and molecular description of a high-copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. MSphere 5. https://doi.org/10.1128/mSphere.00756-20

  4. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  5. Navon-Venezia S, Kondratyeva K, Carattoli A (2017) Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 41:252–275. https://doi.org/10.1093/FEMSRE/FUX013

    Article  CAS  PubMed  Google Scholar 

  6. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN (2014) Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686. https://doi.org/10.1016/J.TIM.2014.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wyres KL, Holt KE (2016) Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 24:944–956. https://doi.org/10.1016/J.TIM.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura-Silva R, Cerdeira L, Oliveira-Silva M, da Costa KRC, Sano E, Fuga B et al (2022) Multidrug-resistant Klebsiella pneumoniae: a retrospective study in Manaus, Brazil. Arch Microbiol 204. https://doi.org/10.1007/s00203-022-02813-0

  10. Li R, Tang H, Xu H, Cui K, Li S, Shen J (2021) Effect on 30-day mortality and duration of hospitalization of empirical antibiotic therapy in CRGNB-infected pneumonia. Ann Clin Microbiol Antimicrob 20:1–8. https://doi.org/10.1186/S12941-021-00421-2/TABLES/6

    Article  Google Scholar 

  11. The European Committee on Antimicrobial Susceptibility Testing (2017) EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. https://www.eucast.org/clinical_breakpoints

  12. The Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST). Tabela de pontos de corte - BrCAST- 2023. https://brcast.org.br/documentos/documentos-3/

  13. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB et al (2017) Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among enterobacteriaceae. J Clin Microbiol 55:2321–2333. https://doi.org/10.1128/JCM.00193-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sfeir MM, Hayden JA, Fauntleroy KA, Mazur C, Johnson JK, Simner PJ et al (2019) EDTA-modified carbapenem inactivation method: a phenotypic method for detecting metallo-β-lactamase-producing enterobacteriaceae. J Clin Microbiol 57. https://doi.org/10.1128/JCM.01757-18

  15. Nogueira K da S, Conte D, Maia FV, Dalla-Costa LM (2015) Distribution of extended-spectrum β-lactamase types in a Brazilian tertiary hospital. Rev Soc Bras Med Trop 48:162–9. https://doi.org/10.1590/0037-8682-0009-2015

  16. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123. https://doi.org/10.1016/J.DIAGMICROBIO.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  17. Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wingett SW, Andrews S (2018) FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338. https://doi.org/10.12688/f1000research.15931.2

  21. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M (2016) DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 35:173–84. https://doi.org/10.12938/bmfh.16-003

  24. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA et al (2023) CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 51:D690–D699. https://doi.org/10.1093/nar/gkac920

    Article  CAS  PubMed  Google Scholar 

  25. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–500. https://doi.org/10.1093/jac/dkaa345

  26. Agresti A (2007) An introduction to categorical data analysis. 2nd ed. John Wiley & Sons, Ltd, Hoboken

  27. Patefield WM, Algorithm AS (1981) 159: an efficient method of generating random R × C tables with given row and column totals. Appl Stat 30:91. https://doi.org/10.2307/2346669

    Article  Google Scholar 

  28. Hope ACA (1968) A simplified monte carlo significance test procedure. J Roy Stat Soc: Ser B (Methodol) 30:582–598. https://doi.org/10.1111/j.2517-6161.1968.tb00759.x

    Article  Google Scholar 

  29. R Core Team (2023) R: A language and environment for statistical computing. https://www.r-project.org/

  30. Hou M, Chen N, Dong L, Fang Y, Pan R, Wang W et al (2022) Molecular epidemiology, clinical characteristics and risk factors for bloodstream infection of multidrug-resistant klebsiella pneumoniae infections in pediatric patients from Tianjin, China. Infect Drug Resist 15:7015–7023. https://doi.org/10.2147/IDR.S389279

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aguilera-Alonso D, Escosa-García L, Saavedra-Lozano J, Cercenado E, Baquero-Artigao F. Carbapenem-resistant Gram-negative bacterial infections in children. Antimicrob Agents Chemother 2020;64. https://doi.org/10.1128/AAC.02183-19

  32. Castagnola E, Tatarelli P, Mesini A, Baldelli I, La Masa D, Biassoni R et al (2019) Epidemiology of carbapenemase-producing Enterobacteriaceae in a pediatric hospital in a country with high endemicity. J Infect Public Health 12:270–274. https://doi.org/10.1016/j.jiph.2018.11.003

    Article  PubMed  Google Scholar 

  33. Kiffer CRV, Rezende TFT, Costa-nobre DT, Sílvia A, Marinonio S, Shiguenaga LH et al (2023) A 7-Year Brazilian national perspective on plasmid-mediated carbapenem resistance in enterobacterales, pseudomonas aeruginosa, and acinetobacter baumannii complex and the impact of the Coronavirus Disease 2019 pandemic on their occurrence. Clin Infect Dis 2019:29–37. https://doi.org/10.1093/cid/ciad260

    Article  Google Scholar 

  34. Pannaraj, Bard, Cerini W (2015) Pediatric carbapenem-resistant enterobacteriaceae in Los Angeles, California. Pediatr Infect Dis J 27:215–25. https://doi.org/10.1097/INF.0000000000000471.Pediatric

  35. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33. https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEG

  36. Nakamura-Silva R, Oliveira-Silva M, Furlan JPR, Stehling EG, Miranda CES, Pitondo-Silva A (2021) Characterization of multidrug-resistant and virulent Klebsiella pneumoniae strains belonging to the high-risk clonal group 258 (CG258) isolated from inpatients in northeastern Brazil. Arch Microbiol 203:4351–4359. https://doi.org/10.1007/s00203-021-02425-0

    Article  CAS  PubMed  Google Scholar 

  37. Peirano G, Chen L, Kreiswirth BN, Pitout JDD (2020) Emerging antimicrobial-resistant high-risk klebsiella pneumoniae Clones ST307 and ST147. Antimicrob Agents Chemother 64. https://doi.org/10.1128/AAC.01148-20

  38. Su S, Li C, Zhao Y, Yu L, Wang Y, Wang Y et al (2020) Outbreak of KPC-2–producing Klebsiella pneumoniae ST76 isolates in an intensive care unit and neurosurgery unit. Microb Drug Resist 26:1009–1018. https://doi.org/10.1089/mdr.2019.0363

    Article  CAS  PubMed  Google Scholar 

  39. Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V et al (2023) Widespread detection of yersiniabactin gene cluster and its encoding integrative conjugative elements (ICE Kp ) among nonoutbreak OXA-48-Producing Klebsiella pneumoniae clinical isolates from Spain and the Netherlands. Microbiol Spectr. https://doi.org/10.1128/spectrum.04716-22

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arend LNVS, Bergamo R, Rocha FB, Bail L, Ito C, Baura VA et al (2023) Dissemination of NDM-producing bacteria in Southern Brazil. Diagn Microbiol Infect Dis 106:115930. https://doi.org/10.1016/j.diagmicrobio.2023.115930

    Article  CAS  PubMed  Google Scholar 

  41. Zeng L, Zhang J, Li C, Fu Y, Zhao Y, Wang Y et al (2020) The determination of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant Klebsiella pneumonia ST11 and ST76 strains isolated from patients in Heilongjiang Province, China. Infect Genet Evol 82:104319. https://doi.org/10.1016/J.MEEGID.2020.104319

    Article  CAS  PubMed  Google Scholar 

  42. Gondal AJ, Choudhry N, Bukhari H, Rizvi Z, Jahan S, Yasmin N (2023) Estimation, evaluation and characterization of carbapenem resistance burden from a tertiary care hospital, Pakistan. Antibiotics 12:1–18. https://doi.org/10.3390/antibiotics12030525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Institute Pasteur teams for the curation and maintenance of BIGSdb-Pasteur databases at https://bigsdb.pasteur.fr/, and the Centro de Diagnóstico Avançado Pequeno Príncipe (CDAPP) for Sanger Sequencing.

Funding

This study was financed in part by the Fundação Araucária, and CEDCA PR – Conselho Estadual dos Direitos da Criança e do Adolescente do Paraná. The funders had no role in the study design, data collection and interpretation, or decision to submit this manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.S.R., F.A.M., L.M. D-C.; Methodology: D.K., L.S.R., A.C.S., É. M.S., T.M.V., R.N.S.; Formal analysis and investigation: D.K., L.S.R, A.C.S., D.M., R.C., M.C.R., F.A.M., D.C.; Funding acquisition: L.M.D-C. Writing—original draft preparation: D.K., D.C.; Writing—review and editing: D.K, L.S.R., D.M., D.C., L.M.D-C; Supervision: L.S.R., D.C., L.M.D-C.

Corresponding author

Correspondence to Libera Maria Dalla-Costa.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Nilton Lincopan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krul, D., Rodrigues, L.S., Siqueira, A.C. et al. High-risk clones of carbapenem resistant Klebsiella pneumoniae recovered from pediatric patients in Southern Brazil. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01299-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01299-w

Keywords

Navigation