Skip to main content
Log in

Effects of heavy metals on bacterial growth parameters in degradation of phenol by an Antarctic bacterial consortium

  • Environmental Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem. A microbial growth model is presented for the growth of a bacterial cell consortium used in the biodegradation of phenol in media containing different metal ions, namely arsenic (As), cadmium (Cd), aluminium (Al), nickel (Ni), silver (Ag), lead (Pb) and cobalt (Co). Bacterial growth was inhibited by these ions in the rank order of Al < As < Co < Pb < Ni < Cd < Ag. Greatest bacterial growth occurred in 1 ppm Al achieving an OD600 of 0.985 and lowest in 1 ppm Ag with an OD600 of 0.090. At a concentration of 1.0 ppm, Ag had a considerable effect on the bacterial consortium, inhibiting the degradation of phenol, whereas this concentration of the other metal ions tested had no effect on degradation. The biokinetic growth model developed supports the suitability of the bacterial consortium for use in phenol degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Convey P (2013) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1, 2nd edn. Elsevier, San Diego, pp 179–188. https://doi.org/10.1016/B978-0-12-384719-5.00264-1

  2. Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn AHL, Laybourn-Parry J, Lyons WB, McMinn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monog 84:203–244

    Article  Google Scholar 

  3. Crossin E, Verghese K, Lockrey S, Ha H, Young G (2020) The environmental impacts of operating an Antarctic research station. J Ind Ecol 24:791–803. https://doi.org/10.1111/jiec.12972

    Article  CAS  Google Scholar 

  4. Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33. https://doi.org/10.1017/S0954102009001722

    Article  ADS  Google Scholar 

  5. Bargagli R (2005) Antarctic ecosystems: environmental contamination, climate change, and human impact. Springer-Verlag, Berlin, p 394

    Google Scholar 

  6. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226. https://doi.org/10.1016/j.scitotenv.2008.06.062

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Convey P, Peck LS (2019) Antarctic environmental change and biological responses. Sci Adv 5:1–16. https://doi.org/10.1126/sciadv.aaz0888

    Article  CAS  Google Scholar 

  8. Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Diversity Distrib 18:726–741. https://doi.org/10.1111/j.1472-4642.2012.00925.x

    Article  Google Scholar 

  9. Burton-Johnson A, Black M, Fretwell PT, Kaluza-Gilbert J (2016) An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10:1665–1677. https://doi.org/10.5194/tc-10-1665-2016

    Article  ADS  Google Scholar 

  10. Hughes KA (2014) Threats to soil communities: human impacts. In: Cowan DA (ed) Antarctic Terrestrial Microbiology: Physical and Biological Properties of Antarctic Soils. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 263–277

    Chapter  Google Scholar 

  11. Snape I, Riddle MJ, Stark JS, Cole CM, King CK, Duquesne S, Gore DB (2001) Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec 37:199–214. https://doi.org/10.1017/S0032247400027236

    Article  Google Scholar 

  12. Szopinska M, Namiesnik J, Polkowska Z (2017) How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Rev Environ Contam Toxicol 239:79–156. https://doi.org/10.1007/398_2015_5008

    Article  CAS  PubMed  Google Scholar 

  13. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  Google Scholar 

  14. Verasoundarapandian G, Darham S, Ahmad SA (2019) Toxicity of molybdenum and microbial application in molybdenum reduction for bioremediation: a mini review. Malay J Biochem Mol Biol 22:46–51

    Google Scholar 

  15. Margesin R, Fonteyne PA, Red B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75. https://doi.org/10.1016/j.resmic.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA (2013) Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Res Inter 2013:871941 https://doi.org/10.1155/2013/871941.

  17. Lee GLY, Ahmad SA, Yasid NA, Zulharnain A, Convey P, Johari WLW, Alias SA, Gonzalez-Rocha G, Shukor MY (2018) Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol 41:553–562. https://doi.org/10.1007/s00300-017-2216-y

    Article  Google Scholar 

  18. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715. https://doi.org/10.1021/es2013227

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zakaria NN, Roslee AFA, Gomez-Fuentes C, Zulkharnain A, Abdulrasheed M, Sabri S, Ramírez-Moreno N, Calisto-Ulloa N, Ahmad SA (2020) Kinetics studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Rev Mex Ing Quím 19:1375–1388. https://doi.org/10.24275/rmiq/Bio1072

    Article  CAS  Google Scholar 

  20. Ahmad SA, Asokan G, Yasid NA, Nawawi NM, Subramaniam K, Zakaria NN, Shukor MY (2018) Effect of heavy metals on biodegradation of phenol by Antarctic bacterium: Arthrobacter bambusae strain AQ5-003. Malay J Biochem Mol Biol 21:47–51

    Google Scholar 

  21. Zakaria NN, Ahmad SA, Lee GLY, Yasid NA, Manogaran M, Subramaniam K, Mazuki TAT, Nawawi NM, Shukor MY (2018) Biodegradation of phenol by Antarctic bacterium Rhodococcus baikonurensis strain AQ5-001 in the presence of heavy metals. Malay J Biochem Mol Biol 21:29–36

    Google Scholar 

  22. Roslee AFA, Gomez-Fuentes C, Zakaria NN, Shaharuddin NA, Zulkharnain A, Abdul Khalil K, Convey P, Ahmad SA (2021) Growth optimisation and kinetic profiling of diesel biodegradation by a cold-adapted microbial consortium isolated from Trinity Peninsula, Antarctica. Biology 10:493. https://doi.org/10.3390/biology10060493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. American Public Health Association (APHA) (2005) Standard method for the examination of water and wastewater, 20th edn. Washington DC, pp 540–544

  24. Gibson AM, Bratchell N, Roberts TA (1987) The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum Type A in pasteurized pork slurry. J Appl Bacteriol 62:479–490. https://doi.org/10.1111/j.1365-2672.1987.tb02680.x

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Chen N, Feng C, Tong S, Li R (2017) Impact of electrostimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio-electrochemical denitrification reactor. Bioresour Technol 232:344–353. https://doi.org/10.1016/j.biortech.2017.02.064

    Article  CAS  PubMed  Google Scholar 

  26. Brown KE, King CK, Harrison PL (2017) Lethal and behavioral impacts of diesel and fuel oil on the Antarctic amphipod Paramoera walkeri. EnvironToxicol Chem 36:2444–2455. https://doi.org/10.1002/etc.3778

    Article  CAS  Google Scholar 

  27. Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P (2004) Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu- and Cd- contaminated soils. Appl Soil Ecol 25:99–109. https://doi.org/10.1016/j.apsoil.2003.09.003

    Article  Google Scholar 

  28. Russak MJ, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Botany 59:3721–3728. https://doi.org/10.1093/jxb/ern219

    Article  CAS  Google Scholar 

  29. Asgeir A, Almas AR, Bakken LR, Mulder J (2004) Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol Biochem 36:805–813. https://doi.org/10.1016/j.soilbio.2004.01.010

    Article  CAS  Google Scholar 

  30. Ahmad SA, Shamaan NA, Syed MA, Dahalan FA, Abdul Khalil K, Ab Rahman NA, Shukor MY (2017) Phenol degradation by Acinetobacter sp. in the presence of heavy metals. J Natl Sci Found Sri Lanka 45:247–253. https://doi.org/10.4038/jnsfsr.v45i3.8189

    Article  CAS  Google Scholar 

  31. Nawawi NM, Nagarajan J, Ahmad SA, Shukor MY, Abdul Latif I (2015) Disrupting Rhodococcus sp: a competent method for genomics and proteomics. J Chem Pharm Sci 8:336–341

    Google Scholar 

  32. Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7. https://doi.org/10.1016/j.jhin.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  33. Yakabe Y, Sano T, Ushio H, Yasunaga T (1980) Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chem Lett 9:373–376. https://doi.org/10.1246/cl.1980.373

    Article  Google Scholar 

  34. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. https://doi.org/10.1128/AEM.02001-07

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670. https://doi.org/10.1128/AAC.46.8.2668-2670.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ibrahim S, Zulkharnain A, Zahri KNM, Lee GLY, Convey P, Gomez-Fuentes C, Sabri S, Khalil KAK, Alias SA, Gonzalez-Rocha G, Ahmad SA (2019) Effect of heavy metals and other xenobiotics on biodegradation of waste canola oil by cold-adapted Rhodococcus sp. strain AQ5–07. Rev Mex Ing Quím 19:1041–1052

    Article  Google Scholar 

  37. Zahri KNM, Zulkharnain A, Gomez-Fuentes C, Sabri S, Ahmad SA (2020) Effects of heavy metals on Antarctic bacterial cell growth kinetics and degradation of waste canola oil. J Environ Biol 41:1433–1441. https://doi.org/10.22438/jeb/41/6/MRN-1464

    Article  CAS  Google Scholar 

  38. Battaglia V, Compagnone A, Bandino A, Bragadin M, Rossi CA, Zanetti F, Colombatto S, Grillo MA, Toninello A (2009) Cobalt induces oxidative stress in isolated liver mitochondria responsible for permeability transition and intrinsic apoptosis in hepatocyte primary cultures. Int J Biochem Cell Biol 41:568–594. https://doi.org/10.1016/j.biocel.2008.07.012

    Article  CAS  Google Scholar 

  39. Khraisheh M, Al-Ghouti MA, AlMomani F (2020) P. putida as biosorbent for the remediation cobalt and phenol from industrial waste wastewaters. Environ Technol Innov 20:101148–101164. https://doi.org/10.1016/j.eti.2020.101148

    Article  CAS  Google Scholar 

  40. Abarian M, Hassanshahian M, Esbah A (2019) Degradation of phenol at high concentrations using immobilization of Pseudomonas putida P53 into sawdust entrapped in sodium-alginate beads. Water Sci Technol 79:1387–1396. https://doi.org/10.2166/wst.2019.134

    Article  CAS  PubMed  Google Scholar 

  41. Hu X, Wang C, Wang L, Zhang R, Chen H (2014) Influence of temperature, pH and metal ions on guaiacol oxidation of purefield laccase from Leptographium qinlingensis. World J Microbiol Biotechnol 30:1285–1290. https://doi.org/10.1007/s11274-013-1554-3

    Article  CAS  PubMed  Google Scholar 

  42. Subramaniam K, Ahmad SA, Convey P, Shaharuddin NA, Khalil KA, Tengku-Mazuki TA, Gomez-Fuentes C, Zulkharnain A (2021) Statistical assessment of phenol biodegradation by a metal-tolerant binary consortium of indigenous Antarctic bacteria. Diversity 13:643. https://doi.org/10.3390/d13120643

    Article  CAS  Google Scholar 

  43. Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: Impact on microbial degradation of organic sompounds and posible improvement strategies. Inter J Mol Sci 14:10197–10228. https://doi.org/10.3390/ijms140510197

    Article  CAS  Google Scholar 

  44. Bissen M, Frimmel FH (2003) Arsenic-a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18. https://doi.org/10.1002/aheh.200390025

    Article  CAS  Google Scholar 

  45. Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Inter J Environ Res Public Health 13:1047–1067. https://doi.org/10.3390/ijerph13111047

    Article  CAS  Google Scholar 

  46. Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  47. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8. https://doi.org/10.1016/j.jhazmat.2009.09.113

    Article  CAS  PubMed  Google Scholar 

  48. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261. https://doi.org/10.1016/S0168-6445(03)00042-1

    Article  CAS  PubMed  Google Scholar 

  49. Bueno C, Kandratavicius N, Venturini N, Figueira RCL, Perez L, Iglesias K, Brugnoli E (2018) An evaluation of trace metal concentration in terrestrial and aquatic environments near Artigas Antarctic scientific base (King George Island, Maritime Antarctica). Water Air Soil Pollution 229:398. https://doi.org/10.1007/s11270-018-4045-1

    Article  ADS  CAS  Google Scholar 

  50. McWatters RS, Wilkins D, Spedding T, Hince G, Raymond B, Lagerewskij G, Terry D, Wise L, Snape I (2016) On site remediation of a fuel spill and soil reuse in Antarctica. Sci Total Environ 571:963–973. https://doi.org/10.1016/j.scitotenv.2016.07.084

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Vlcek V, Juricka D, Mikpva J (2017) Heavy metal concentration in selected soils and sediments of Livingston Island, Deception Island, King George Island, James Ross Island (Antarctica). Czech Polar Rep 7:18–33. https://doi.org/10.5817/CPR2017-1-3

    Article  Google Scholar 

  52. Tengku-Mazuki T, Subramaniam K, Zakaria N, Convey P, Abdul Khalil K, Lee GLY, Zulkharnain A, Shaharuddin NA, Ahmad SA (2020) Optimization of phenol degradation by Antarctic bacterium Rhodococcus sp. Antarct Sci 32(6):486–495. https://doi.org/10.1017/S0954102020000358

    Article  ADS  Google Scholar 

  53. Lee GLY, Zakaria NN, Futamata H, Suzuki K, Zulkharnain A, Shaharuddin NA, Convey P, Zahri KNM, Ahmad SA (2022) Metabolic pathway of phenol degradation of a cold-adapted Antarctic bacteria, Arthrobacter sp. Catalysts 12:1422. https://doi.org/10.3390/catal12111422

    Article  CAS  Google Scholar 

  54. Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S (2016) Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health 13:300. https://doi.org/10.3390/ijerph13030300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahiudddin M, Fakhruddin AN, Abdullah-Al-Mahin (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol 23:741820. https://doi.org/10.5402/2012/741820

    Article  CAS  Google Scholar 

  56. Pham VHT, Kim J, Chang S, Chung W (2022) Bacterial biosorbents, an efficient heavy metals green clean-up strategy: Prospects, challenges, and opportunities. Microorganisms 10:610. https://doi.org/10.3390/microorganisms10030610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Subramaniam K, Mazuki TAT, Shukor MY, Ahmad SA (2019) Isolation and optimisation of phenol degradation by Antarctic isolate using one factor at time. Malays J Biochem Mol Biol 22(1):79–86

    Google Scholar 

  58. Sepehr S, Shahnavaz B, Asoodeh A, Karrabi M (2019) Biodegradation of phenol by cold-tolerant bacteria isolated from alpine soils of Binaloud Mountains in Iran. J Environ Sci Health 54(4):367–379

    Article  CAS  Google Scholar 

  59. Margesin R, Schumann P, Spröer C, Gounot AM (2004) Arthrobacterpsychrophenolicus sp. nov., isolated from an Alpine ice cave. Int J Syst Evol Microbiol 54(6):2067–2072

    Article  CAS  PubMed  Google Scholar 

  60. Filipowicz N, Momotko M, Boczkaj G, Pawlikowski T, Wanarska M, Cieśliński H (2017) Isolation and characterization of phenol-degrading psychrotolerant yeasts. Water Air Soil Pollut 228(6):210. https://doi.org/10.1007/s11270-017-3391-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Nancy Calisto-Ulloa, Chilean Army and the Antarctic General Bernardo O’Higgins Station staff especially the Comandante de la Base O’Higgins, Teniente Coronel Jose Ignacio Alvarado Camps, the Comandante de la sección de exploracion y rescate O’higgins, Capitan René Salgado Rebolledo, and Sargento Segundo Augusto Antonio Barra Morale, Sargento Segundo Flavio Marcelo Nahuelcoy Perez and Sargento Segundo Claudio Durand Ibacache.

Funding

This study was supported by Universiti Putra Malaysia, PUTRA Berimpak (9660000), and Centro de Investigacion y Monitoreo Ambiental Antàrctico (CIMAA). Peter Convey is supported by NERC core funding to the BAS ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luiz Henrique Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tengku-Mazuki, T.A., Darham, S., Convey, P. et al. Effects of heavy metals on bacterial growth parameters in degradation of phenol by an Antarctic bacterial consortium. Braz J Microbiol 55, 629–637 (2024). https://doi.org/10.1007/s42770-023-01215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01215-8

Keywords

Navigation