Skip to main content
Log in

Enhanced production of cordycepin under solid-state fermentation of Cordyceps militaris by using combinations of grains/substrates

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This manuscript deals with cordycepin, an interesting secondary compound produced from entomopathogenic fungus, Cordyceps. It has attracted commercial interest due to its immense pharmacological importance beneficial to human health. In this study, the contents of cordycepin and its derivatives, like adenine and adenosine, were evaluated through solid-state fermentation using combinations of various grains as substrate. Treatment with grain combination numbers 2, 7, 8, and 9 exhibited higher cordycepin content (1.621, 1.929, 1.895, and 1.996 mg/g cordycepin, respectively) than control (rice). The grain combination number 7 exhibited significantly higher adenine content (700 mg/g) than the control and all other combinations. Treatments with grain combination numbers 2, 5, and 7 exhibited higher adenosine content (2.719, 2.938, and 3.392 mg/g, respectively); however, no significant increase in adenosine content was noted in any treatments. The biomass including fresh mycelium and fruit body was found higher in grain combination numbers 7 and 9, leading to enhanced cordycepin content. Overall, the increase in the fresh biomass significantly enhanced cordycepin accumulation. The level of cordycepin was recorded as higher than that of its derivatives, adenosine and adenine. The grain combination of rice, wheat, jowar, bajra, and sugarcane bagasse added to basal medium exhibited the highest cordycepin content and was found suitable for solid-state fermentation of Cordyceps militaris. To our understanding, the present study is the first to use combinations of cereals for the production of cordycepin from C. militaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data made available on request.

References

  1. Ma L, Song Z, Mei D (2015) Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr Res 35:431–439. https://doi.org/10.1016/j.nutres.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  2. Olatunji OJ, Tang J, Tola A, Auberon F, Oluwaniyi O, Ouyang Z (2018) The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoter 129:293–316. https://doi.org/10.1016/j.fitote.2018.05.010

    Article  CAS  Google Scholar 

  3. Wang M, Meng XY, Le Yang R, Qin T, Wang XY, Zhang KY, Fei CZ, Li Y, Hu YL, Xue FQ (2012) Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohyd Polym 89:461–466. https://doi.org/10.1016/j.carbpol.2012.03.029

    Article  CAS  Google Scholar 

  4. Gregori A (2014) Cordycepin production by C. militaris cultivation on spent brewery grains. Acta Biol Slov 57(2):45–52

    Google Scholar 

  5. Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L (2015) Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett 10:595–599. https://doi.org/10.3892/ol.2015.3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho HJ, Cho JY, Rhee MH, Lim CR, Park HJ (2006) Cordycepin (3′-deoxyadenosine) inhibits human platelet aggregation induced by U46619, a TXA2 analogue. J Pharm Pharmacol 58:1677–1682. https://doi.org/10.1211/jpp.58.12.0016

    Article  CAS  PubMed  Google Scholar 

  7. Guo P, Kai Q, Gao J, Lian ZQ, Wu CM, Wu CA, Zhu HB (2010) Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113:395–403. https://doi.org/10.1254/jphs.10041FP

    Article  CAS  PubMed  Google Scholar 

  8. Sugar AM, McCaffrey RP (1998) Antifungal activity of 3’-deoxyadenosine (cordycepin)”. Antimicrob agents chemother 42:61424–61427. https://doi.org/10.1128/AAC.42.6.1424

    Article  Google Scholar 

  9. Cao T, Xu R, Xu Y, Liu Y, Wan Q (2019) The protective effect of Cordycepin on diabetic nephropathy through autophagy induction in vivo and in vitro. Int Urol Nephrol 51:1883–1892. https://doi.org/10.1007/s11255-019-02241-y

    Article  CAS  PubMed  Google Scholar 

  10. Ma L, Zhang S, Du M (2015) Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr Res 35:431–439. https://doi.org/10.1016/j.nutres.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  11. An Y, Li Y, Wang X, Chen Z, Xu H, Wu L, Li S, Wang C, Luan W, Wang X (2018) Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids Health Dis 17:276. https://doi.org/10.1186/s12944-018-0910-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitakaze M, Hori M (2000) Adenosine therapy: a new approach to chronic heart failure”. Expert Opin Investig Drugs 9(11):2519–2535. https://doi.org/10.1517/13543784.9.11.2519

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Y, Wong JH, Fu M, Ng TB, Liu ZK, Wang CR, Li N, Qiao WT, Wen TY, Liu F (2011) Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomed 15,18(2–3):189–93. https://doi.org/10.1016/j.phymed.2010.04.010

  14. Oh J, Yoon DH, Shrestha B, Choi HK, Sung GH (2019) Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol 57:54–63. https://doi.org/10.1007/s12275-019-8486-z

    Article  CAS  PubMed  Google Scholar 

  15. Pang F, Wang L, Jin Y, Guo L, Song L, Liu G, Feng C (2018) Transcriptome analysis of Paecilomyces hepiali at different growth stages and culture additives to reveal putative genes in cordycepin biosynthesis. Genomics 110:162–170. https://doi.org/10.1016/j.ygeno.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  16. Zhou X, Cai G, He Y, Tong G (2016) Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD(+)-dependent DNA ligase inhibitor. Exp Ther Med 12:1812–1816. https://doi.org/10.3892/etm.2016.3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin Q, Long L, Wu L, Zhang F, Wu S, Zhang W, Sun X (2016) Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food Agric. https://doi.org/10.1002/jsfa.8097

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fan DD, Wang W, Zhong JJ (2012) Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J 60:30–35. https://doi.org/10.1016/j.bej.2011.09.014

    Article  CAS  Google Scholar 

  19. Yang D, Yaguchi T, Yamamoto H, Nishizaki T (2007) Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation”. Biochem Pharm 73(10):1665–1675. https://doi.org/10.1016/j.bcp.2007.01.020

    Article  CAS  PubMed  Google Scholar 

  20. Nakav S, Chaimovitz C, Sufaro Y (2008) Anti-inflammatory preconditioning by agonists of adenosine A1 receptor. PLoS One 3(5):e2107. https://doi.org/10.1371/journal.pone.0002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manfred JP, Sparks Jr HV (1982) Adenosine’s role in coronary vasodilation induced by atrial pacing and norepinephrine. Am J Physiol—Endocrinol Metab 243, 4. H536–H545

  22. Ontyd J, Schrader J (1984) Measurement of adenosine, inosine, and hypoxanthine in human plasma”. J Chromatogr 307(2):404–409

    Article  CAS  PubMed  Google Scholar 

  23. Tsai YJ, Lin LC, Tsai TH (2010) Pharmacokinetics of ade nosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat”. J Agric Food Chem 58(8):4638–4643. https://doi.org/10.1021/jf100269g

    Article  CAS  PubMed  Google Scholar 

  24. Yang FQ, Li SP, Li P, Wang YT (2007) Optimization of CEC for simultaneous determination of eleven nucleosides and nucleobases in Cordyceps using central composite design”. Electro 28(11):1681–1688. https://doi.org/10.1002/elps.200600416

    Article  CAS  Google Scholar 

  25. Yang D, Yaguchi T, Lim CR, Ishizawa Y, Nakano T, Nishizaki T (2010) Tuning of apoptosis-mediator gene transcription in HepG2 human hepatoma cells through an adenosine signal”. Can Lett 291(2):225–229. https://doi.org/10.1016/j.canlet.2009.10.016

    Article  CAS  Google Scholar 

  26. Huang SJ, Huang FK, Li YS, Shu-Yao T (2017) The quality improvement of solid-state fermentation with Cordyceps militaris by UVB irradiation. Food Technol Biotechnol 55:445. https://doi.org/10.17113/ftb.55.04.17.5235

  27. Adnan M, Ashraf SA, Khan S, Alshammari E, Awadelkareem AM (2017) Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. CyTA-J Food 15:617–621. https://doi.org/10.1080/19476337.2017.1325406

    Article  CAS  Google Scholar 

  28. Panjikkaran ST, Mathew D (2013) An environmentally friendly and cost-effective technique for the commercial cultivation of oyster mush room Pleurotus florida (Mont.) Singer]. J Sci Food Agric 93:680–684. https://doi.org/10.1002/jsfa.5827

    Article  CAS  Google Scholar 

  29. Yang D, Liang J, Wang Y, Sun F, Tao H, Xu Q (2016) Tea waste: an effective and economic substrate for oyster mushroom cultivation. J Sci Food Agric 96:680–684. https://doi.org/10.1002/jsfa.7140

    Article  CAS  PubMed  Google Scholar 

  30. Huang L, Li Q, Chen Y, Wang X, Zhou X (2009) (2009) Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. Afr J Microbiol Res 3:957–961

    CAS  Google Scholar 

  31. Shrestha B, Zhang W, Zhang Y, Liu X (2012) The medicinal fungus Cordyceps militaris: research and development. Mycol Prog 11:599–614. https://doi.org/10.1007/s11557-012-0825-y

    Article  Google Scholar 

  32. Chiang SS, Liang ZC, Wang YC, Liang CH (2017) Effect of lightemitting bits human platelet aggregation induced by U46619, a TXA2 analogue. J Pharm Pharmacol 58:1677–1682. https://doi.org/10.1211/jpp.58.12.0016

    Article  CAS  Google Scholar 

  33. Wen TC, Kang C, Meng ZB, Qi YB, Hyde KD, Kang JC (2016) Enhanced production of cordycepin by solid state fermentation of Cordyceps militaris using additives. Chiang Mai J Sci 43(5):972–984. https://doi.org/10.1016/j.enzmictec.2006.09.008

    Article  CAS  Google Scholar 

  34. Chen JM, Yu WW, Wu H, Wu DD, Lai FR (2012) Analysis of the nutritional components of corn cobs. Mod Food Sci Technol 28:1073–1075

    CAS  Google Scholar 

  35. Gu YX, Wang ZS, Li SX, Yuan QS (2007) Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem 102(4):1304–1309

    Article  CAS  Google Scholar 

  36. Jian LR, Li (2017) pin and adenosine production of Cordyceps militaris cultured on wheat solid substrate. Acad J Agric Res 5(10):279–286. https://doi.org/10.15413/ajar.2017.0138

  37. Dong JZ, Lei C, Zheng XJ, Ai XR, Wang Y, Wang Q (2013) Light wavelengths regulate growth and active components of Cordyceps militaris fruit bodies. J Food Biochem 37:578–584. https://doi.org/10.1111/jfbc.12009

    Article  CAS  Google Scholar 

  38. Wu CY, Liang ZC, Tseng CY, Hu SH (2016) Effects of illumination pattern during cultivation of fruiting Body and bioactive compound production by the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 18:589–597. https://doi.org/10.1615/intjmedmushrooms.v18.i7.40

    Article  PubMed  Google Scholar 

  39. Wu CY, Liang CH, Liang ZC (2022) Enhanced production of fruiting bodies and bioactive compounds of Cordyceps militaris with grain substrates and cultivation patterns. J Tai Inst Chem Eng 132:104138

    Article  CAS  Google Scholar 

  40. Lim L, Lee C, Chang E (2012) Optimization of solid state culture conditions for the production of adenosine, cordycepin, and D-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.:Fr.) Link (Ascomycetes). Int J Med Mushrooms 14:181–187. https://doi.org/10.1615/intjmedmushr.v14.i2.60

    Article  CAS  PubMed  Google Scholar 

  41. Wu F, Chen Y, Chang S, Shih I (2013) Cultivation of medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes), and production of cordycepin using the spent medium from levan fermentation. Int J Med Mushroom 15:393–405. https://doi.org/10.1615/intjmedmushr.v15.i4.70

    Article  Google Scholar 

  42. Cohen N, Cohen J, Asatiani MD, Varshney VK, Yu HT, Yang YC, Li YH, Mau JL, Wasser SP (2014) Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int J Med Mushrooms 16(3):273–291. https://doi.org/10.1615/intjmedmushr.v16.i3.80

    Article  CAS  PubMed  Google Scholar 

  43. Yang F, Li D, Feng K, Hu DJ, Li SP (2010) Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spectrometry. J Chromatogr A 1217:5501–5510. https://doi.org/10.1016/j.chroma.2010.06.062

    Article  CAS  PubMed  Google Scholar 

  44. Chassy BM, Suhadolnik RJ (1969) Nucleoside antibiotics IV. Metabolic fate of adenosine and cordycepin by Cordyceps militaris during cordycepin biosynthesis. Bioch Bioph Acta 182:2:307–315

  45. Kredich NM, Guarino AJ (1961) Studies on the biosynthesis of cordycepin. Biochim Biophys Acta 47:499–535

    Article  Google Scholar 

  46. Suhadolnik RJ, Cory JG (1964) Further evidence for the biosynthesis of cordycepin and proof of the structure of 3-deoxyribose. Biochim Et Biophys Acta 91:661–662

    CAS  Google Scholar 

  47. Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzym Microb Technol 39:641–646

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank SERB, New Delhi, for the financial support under the SERB-TAR, (TAR/2019/000051) authorities of Savitribai Phule Pune University, and the Director, MACS-Agharkar Research Institute, Pune, for providing all laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

MB performed the experimental work. SS is responsible for the supervision, data monitoring, and data analysis.

Corresponding authors

Correspondence to Mahesh Borde or Sanjay K. Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Rosane Freitas Schwan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borde, M., Singh, S.K. Enhanced production of cordycepin under solid-state fermentation of Cordyceps militaris by using combinations of grains/substrates. Braz J Microbiol 54, 2765–2772 (2023). https://doi.org/10.1007/s42770-023-01169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01169-x

Keywords

Navigation