Skip to main content

Advertisement

Log in

Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Farnesol is a natural essential oil with antimicrobial properties. Complexation of farnesol in chitosan nanoparticles can be useful to improve its bioavailability and potentiate its antifungal capabilities such as inhibition of hyphal and biofilm formation. The aim of this study was to develop and characterize chitosan nanoparticles with farnesol (NF) and evaluate their toxicity and antifungal action on C. albicans in vivo. The NF were prepared by the ionic gelation method and showed physicochemical characteristics such as diameter less than 200 nm, monodisperse distribution, positive zeta potential, spherical morphology, and stability after 120 days of storage. In the evaluation of toxicity in Galleria mellonella, NF did not reduce the survival rate, indicating that there was no toxicity in vivo at the doses tested. In the assays with G. mellonella infected by C. albicans, the larvae treated with NF had a high survival rate after 48 h, with a significant reduction of the fungal load and inhibition of the formation of biofilms and hyphae. In the murine model of vulvovaginal candidiasis (VVC), histopathological analysis showed a reduction in inflammatory parameters, fungal burden, and hyphal inhibition in mice treated with NF. The produced nanoparticles can be a promising alternative to inhibit C. albicans infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. The authors alone are responsible for the content and the writing of the paper.

References

  1. Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463. https://doi.org/10.1128/AEM.68.11.5459-5463.2002

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patra JK, Das G, Fraceto LF et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16(1):71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arya N, Chakraborty S, Dube N, Katti DS (2009) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res B Appl Biomater 88(1):17–31. https://doi.org/10.1002/jbm.b.31085

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes Costa A, Evangelista Araujo D, Santos Cabral M et al (2019) Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol 57(1):52–62. https://doi.org/10.1093/mmy/myx155

    Article  CAS  PubMed  Google Scholar 

  5. Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 5(4):e67. Published 2004 Jul 26. https://doi.org/10.1208/pt050467

  6. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  7. Nikoomanesh F, Roudbarmohammadi S, Khoobi M, Haghighi F, Roudbary M (2019) Design and synthesis of mucoadhesive nanogel containing farnesol: investigation of the effect on HWP1, SAP6 and Rim101 genes expression of Candida albicans in vitro. Artif Cells Nanomed Biotechnol 47(1):64–72. https://doi.org/10.1080/21691401.2018.1543193

    Article  CAS  PubMed  Google Scholar 

  8. Clark RE, Squire LR (2010) An animal model of recognition memory and medial temporal lobe amnesia: history and current issues. Neuropsychologia 48(8):2234–2244. https://doi.org/10.1016/j.neuropsychologia.2010.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mikulak E, Gliniewicz A, Przygodzka M, Solecka J (2018) Galleria mellonella L. as model organism used in biomedical and other studies. Przegl Epidemiol 72(1):57–73

    PubMed  Google Scholar 

  10. Champion OL, Wagley S, Titball RW (2016) Galleria mellonella as a model host for microbiological and toxin research. Virulence 7(7):840–845. https://doi.org/10.1080/21505594.2016.1203486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E (2020) Galleria mellonella for the evaluation of antifungal efficacy against medically important fungi, a narrative review. Microorganisms 8(3):390. https://doi.org/10.3390/microorganisms8030390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allegra E, Titball RW, Carter J, Champion OL (2018) Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198:469–472. https://doi.org/10.1016/j.chemosphere.2018.01.175

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Calvo P, Remunán-López C, Vila-Jato JL (1997) Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  14. Costa AF, Silva LDC, Amaral AC (2021) Farnesol: An approach on biofilms and nanotechnology. Med Mycol 59(10):958–969. https://doi.org/10.1093/mmy/myab020

    Article  CAS  PubMed  Google Scholar 

  15. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach [retracted in: Evid Based Complement Alternat Med. 2021 Feb 15;2021:7259208]. Evid Based Complement Alternat Med 2014:651593. https://doi.org/10.1155/2014/651593

  16. Abd El-Hack ME, El-Saadony MT, Shafi ME et al (2020) Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol 164:2726–2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153

    Article  CAS  PubMed  Google Scholar 

  17. Lai SK, Wang YY, Hida K, Cone R, Hanes J (2011) Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses [published correction appears in Proc Natl Acad Sci U S A 108(34):14371]. Proc Natl Acad Sci U S A 107(2):598-603.https://doi.org/10.1073/pnas.0911748107

  18. Vaghasiya K, Sharma A, Ray E, Adlakha S, Verma RK (2020) Methods to characterize nanoparticles for mucosal drug delivery. In: Muttil P., Kunda N. (eds) Mucosal delivery of drugs and biologics in nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series 41:27-57

  19. Danaei M, Dehghankhold M, Ataei S, et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57. Published 2018 May 18. https://doi.org/10.3390/pharmaceutics10020057

  20. Freitas C, Muller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN (TM)) dispersions. Int J Pharm 168(2):221–229. https://doi.org/10.1016/S0378-5173(98)00092-1

    Article  CAS  Google Scholar 

  21. Islam MA, Park TE, Reesor E et al (2015) Mucoadhesive chitosan derivatives as novel drug carriers. Curr Pharm Des 21(29):4285–4309. https://doi.org/10.2174/1381612821666150901103819

    Article  CAS  PubMed  Google Scholar 

  22. Woranuch S, Yoksan R (2013) Eugenol-loaded chitosan nanoparticles: I Thermal stability improvement of eugenol through encapsulation. Carbohydr Polym 96(2):578–585. https://doi.org/10.1016/j.carbpol.2012.08.117

    Article  CAS  PubMed  Google Scholar 

  23. Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36(2):451–462. https://doi.org/10.1016/j.etap.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  24. National Center for Biotechnology Information (2022) PubChem Database. Farnesol, CID=3327. https://pubchem.ncbi.nlm.nih.gov/compound/Farnesol (accessed 15 May 2022).

  25. Černáková L, Jordao L, Bujdáková H (2018) Impact of farnesol and Corsodyl® on Candida albicans forming dual biofilm with Streptococcus mutans. Oral Dis 24(6):1126–1131. https://doi.org/10.1111/odi.12873

    Article  PubMed  Google Scholar 

  26. Arias LS, Butcher MC, Short B, et al (2020) Chitosan ameliorates Candida auris virulence in a Galleria mellonella infection model [published correction appears in Antimicrob Agents Chemother. 2021 Feb 17;65(3):]. Antimicrob Agents Chemother 2020;64(8):e00476-20. https://doi.org/10.1128/AAC.00476-20

  27. Cé R, Silva RC, Trentin DS et al (2020) Galleria mellonella larvae as an In Vivo model to evaluate the toxicity of polymeric nanocapsules. J Nanosci Nanotechnol 20(3):1486–1494. https://doi.org/10.1166/jnn.2020.17170

    Article  CAS  PubMed  Google Scholar 

  28. Pierce CG, Srinivasan A, Ramasubramanian AK, López-Ribot JL (2015) From biology to drug development: new approaches to combat the threat of fungal biofilms. Microbiol Spectr 3(3):https://doi.org/10.1128/microbiolspec.MB-0007-2014

  29. Hornby JM, Jensen EC, Lisec AD et al (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992. https://doi.org/10.1128/AEM.67.7.2982-2992.2001

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL (2017) Targeting Candida albicans filamentation for antifungal drug development. Virulence 8(2):150–158. https://doi.org/10.1080/21505594.2016.1197444

    Article  CAS  PubMed  Google Scholar 

  31. Samaranayake YH, Samaranayake LP (2001) Experimental oral candidiasis in animal models. Clin Microbiol Rev 14(2):398–429. https://doi.org/10.1128/CMR.14.2.398-429.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singkum P, Muangkaew W, Suwanmanee S, Pumeesat P, Wongsuk T, Luplertlop N (2020) Suppression of the pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol. J Gen Appl Microbiol 65(6):277–283. https://doi.org/10.2323/jgam.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  33. Xie Z, Thompson A, Kashleva H, Dongari-Bagtzoglou A (2011) A quantitative real-time RT-PCR assay for mature C albicans biofilms. BMC Microbiol 11:93. https://doi.org/10.1186/1471-2180-11-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hisajima T, Maruyama N, Tanabe Y et al (2008) Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol 52(7):327–333. https://doi.org/10.1111/j.1348-0421.2008.00044.x

    Article  CAS  PubMed  Google Scholar 

  35. Naglik JR, Fidel PL Jr, Odds FC (2008) Animal models of mucosal Candida infection. FEMS Microbiol Lett 283(2):129–139. https://doi.org/10.1111/j.1574-6968.2008.01160.x

    Article  CAS  PubMed  Google Scholar 

  36. Yano J, Fidel PL Jr (2011) Protocols for vaginal inoculation and sample collection in the experimental mouse model of Candida vaginitis. J Vis Exp 58:3382. https://doi.org/10.3791/3382

    Article  Google Scholar 

Download references

Funding

This work was supported by the Federal University of Goiás (UFG) and the Research Support Foundation of the State of Goiás (FAPEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Fernandes Costa.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Responsible Editor: Celia Maria de Almeida Soares

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A.F., da Silva, J.T., Martins, J.A. et al. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans. Braz J Microbiol 55, 143–154 (2024). https://doi.org/10.1007/s42770-023-01168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01168-y

Keywords

Navigation