Skip to main content
Log in

Exploring viral infections in honey bee colonies: insights from a metagenomic study in southern Brazil

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The decline in honey bee colonies in different parts of the world in recent years is due to different reasons, such as agricultural practices, climate changes, the use of chemical insecticides, and pests and diseases. Viral infections are one of the main causes leading to honey bee population declines, which have a major economic impact due to honey production and pollination. To investigate the presence of viruses in bees in southern Brazil, we used a metagenomic approach to sequence adults’ samples of concentrated extracts from Apis mellifera collected in fifteen apiaries of six municipalities in the Rio Grande do Sul state, Brazil, between 2016 and 2017. High-throughput sequencing (HTS) of these samples resulted in the identification of eight previously known viruses (Apis rhabdovirus 1 (ARV-1), Acute bee paralysis virus (ABPV), Aphid lethal paralysis virus (ALPV), Black queen cell virus (BQCV), Bee Macula-like virus (BeeMLV), Deformed wing virus (DWV), Lake Sinai Virus NE (LSV), and Varroa destructor virus 3 (VDV-3)) and a thogotovirus isolate. This thogotovirus shares high amino acid identities in five of the six segments with Varroa orthomyxovirus 1, VOV-1 (98.36 to 99.34% identity). In contrast, segment 4, which codes for the main glycoprotein (GP), has no identity with VOV-1, as observed for the other segments, but shares an amino acid identity of 34–38% with other glycoproteins of viruses from the Orthomyxoviridae family. In addition, the putative thogotovirus GP also shows amino acid identities ranging from 33 to 41% with the major glycoprotein (GP64) of insect viruses of the Baculoviridae family. To our knowledge, this is the second report of a thogotovirus found in bees and given this information, this thogotovirus isolate was tentatively named Apis thogotovirus 1 (ATHOV-1). The detection of multiple viruses in bees is important to better understand the complex interactions between viruses and their hosts. By understanding these interactions, better strategies for managing viral infections in bees and protecting their populations can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available under request.

Code availability

Not applicable.

References

  1. Vanbergen AJ, Garratt MP, Vanbergen AJ, et al (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environhttps://doi.org/10.1890/120126

  2. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science (80). https://doi.org/10.1126/science.1255957

  3. Klein AM, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci. 274(1608):303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  4. Hung KLJ, Kingston JM, Albrecht M, Holway DA (1870) Kohn JR (2018) The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc B Biol Sci. 285:20172140. https://doi.org/10.1098/RSPB.2017.2140

    Article  Google Scholar 

  5. De Miranda JR, Bailey L, Ball B V et al (2013) Standard methods for virus research in Apis mellifera. J Apic Res. https://doi.org/10.3896/IBRA.1.52.4.22

  6. Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol. https://doi.org/10.1111/1462-2920.12426

  7. Degrandi-Hoffman G, Chen Y, Watkins Dejong E, Chambers ML, Hidalgo G (2015) Effects of oral exposure to fungicides on honey bee nutrition and virus levels. J Econ Entomol. https://doi.org/10.1093/jee/tov251

  8. Traynor KS, Mondet F, de Miranda JR, et al (2020) Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.04.004

  9. Beaurepaire A, Piot N, Doublet V, et al (2020) Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects. https://doi.org/10.3390/insects11040239

  10. Matthijs S, Regge N De (2020) Nationwide screening for important bee viruses in Belgian honey bees. Proceedings. https://doi.org/10.3390/proceedings2020050054

  11. Shi M, Lin XD, Tian JH et al (2016) Redefining the invertebrate RNA virosphere. Nature 540(7634):539–543. https://doi.org/10.1038/nature20167

    Article  CAS  PubMed  Google Scholar 

  12. Páez DJ, Fleming-Davies AE (2020) Understanding the evolutionary ecology of host-pathogen interactions provides insights into the outcomes of insect pest biocontrol. Viruses. 12(2):141. https://doi.org/10.3390/v12020141

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  14. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Renner S, ed. Syst Biol. 2008;57(5):758–771. https://doi.org/10.1080/10635150802429642

  16. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60(5):685–699

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bin Li K, ClustalW MPI (2003) ClustalW analysis using distributed and parallel computing. Bioinformatics. 19(12):1585–1586. https://doi.org/10.1093/bioinformatics/btg192

    Article  CAS  Google Scholar 

  18. Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15(4):305–308. https://doi.org/10.1093/bioinformatics/15.4.305

    Article  CAS  PubMed  Google Scholar 

  19. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7(1):1–9. https://doi.org/10.1038/ncomms11257

    Article  CAS  Google Scholar 

  21. Payne S (2023) Family Polyomaviridae. In: Viruses. Academic Press; 321–325. https://doi.org/10.1016/b978-0-323-90385-1.00043-1

  22. Shi M, Lin XD, Tian JH, et al. Redefining the invertebrate RNA virosphere. Nature. https://doi.org/10.1038/nature20167

  23. Hubálek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. https://doi.org/10.1007/s00436-012-2910-1

  24. Payne S (2017) Family Orthomyxoviridae. In: Viruses. https://doi.org/10.1016/b978-0-12-803109-4.00023-4

  25. Portela A, Jones LD, Nuttall P (1992) Identification of viral structural polypeptides of Thogoto virus (a tick-borne orthomyxo-like virus) and functions associated with the glycoprotein. J Gen Virol 73(11):2823–2830. https://doi.org/10.1099/0022-1317-73-11-2823

    Article  CAS  PubMed  Google Scholar 

  26. Morse MA, Marriott AC, Nuttall PA (1992) The glycoprotein of Thogoto virus (a tick-borne orthomyxo-like virus) is related to the baculovirus glycoprotein GP64. Virology. https://doi.org/10.1016/0042-6822(92)90030-S

  27. Leahy MB, Dessens JT, Weber F, Kochs G, Nuttall PA (1997) The fourth genus in the Orthomyxoviridae: sequence analyses of two Thogoto virus polymerase proteins and comparison with influenza viruses. Virus Res. https://doi.org/10.1016/S0168-1702(97)00072-5

  28. Orthomyxoviridae - negative sense RNA viruses - negative sense RNA viruses (2011) - International Committee on Taxonomy of Viruses (ICTV). Accessed September 4, 2020. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/209/orthomyxoviridae

  29. Lung O, Westenberg M, Vlak JM, Zuidema D, Blissard GW (2002) Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol 76(11):5729–5736. https://doi.org/10.1128/JVI.76.11.5729-5736.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuzmin IV, Novella IS, Dietzgen RG, Padhi A, Rupprecht CE (2009) The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect Genet Evol 9(4):541–553. https://doi.org/10.1016/j.meegid.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  31. Walker PJ, Blasdell KR, Calisher CH et al (2018) ICTV virus taxonomy profile: Rhabdoviridae. J Gen Virol 99(4):447–448. https://doi.org/10.1099/jgv.0.001020

    Article  CAS  PubMed  Google Scholar 

  32. Kuzmin IV, Novella IS, Dietzgen RG, Padhi A, Rupprecht CE (2009) The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect Genet Evol 9(4):541–553. https://doi.org/10.1016/j.meegid.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  33. Walker PJ, Firth C, Widen SG, et al (2015) Evolution of genome size and complexity in the Rhabdoviridae. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004664

  34. Valles SM, Chen Y, Firth AE et al (2017) ICTV virus taxonomy profile: Dicistroviridae. J Gen Virol 98(3):355–356. https://doi.org/10.1099/jgv.0.000756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Runckel C, Flenniken ML, Engel JC et al (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One. 6(6):e20656. https://doi.org/10.1371/journal.pone.0020656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daughenbaugh KF, Martin M, Brutscher LM et al (2015) Honey bee infecting Lake Sinai viruses. Viruses 7(6):3285–3309. https://doi.org/10.3390/v7062772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Remnant EJ, Shi M, Buchmann G et al (2017) A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol 91(16):158–175. https://doi.org/10.1128/jvi.00158-17

    Article  CAS  Google Scholar 

  38. Daughenbaugh KF, Martin M, Brutscher LM, et al (2015) Honey bee infecting Lake Sinai viruses. Viruses. https://doi.org/10.3390/v7062772

  39. Valles SM, Chen Y, Firth AE, et al (2017) ICTV virus taxonomy profile: Iflaviridae. J Gen Virol. https://doi.org/10.1099/jgv.0.000757

  40. Oers MM va. Genomics and biology of lflaviruses. Insect Virol. Published online 2010.

  41. Martelli GP, Sabanadzovic S, Sabanadzovic NAG, Edwards MC, Dreher T (2002) The family Tymoviridae. Arch Virol 147(9):1837–1846. https://doi.org/10.1007/s007050200045

    Article  CAS  PubMed  Google Scholar 

  42. Simmonds P, Adams MJ, Benk M, et al (2017) Consensus statement: Virus taxonomy in the age of metagenomics. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro.2016.177

  43. Unclassified viruses - unclassified viruses - unclassified viruses - ICTV. Accessed March 23, 2021. https://talk.ictvonline.org/ictv-reports/ictv_online_report/unclassified-viruses/w/unclassified-viruses

  44. Backovic M, Jardetzky TS (2009) Class III viral membrane fusion proteins. Curr Opin Struct Biol 19(2):189–196. https://doi.org/10.1016/J.SBI.2009.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng R, Zhang S, Cui Y, Shi Y, Gao GF, Qi J (2017) Structures of human-infecting Thogotovirus fusogens support a common ancestor with insect baculovirus. Proc Natl Acad Sci U S A 114(42):E8905–E8912. https://doi.org/10.1073/pnas.1706125114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai C, Qi J, Wu Y et al (2019) Postfusion structure of human-infecting Bourbon virus envelope glycoprotein. J Struct Biol 208(2):99–106. https://doi.org/10.1016/j.jsb.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  47. Granberg F, Vicente-Rubiano M, Rubio-Guerri C et al (2013) Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid lethal paralysis, Israel acute paralysis and Lake Sinai viruses. PLoS One. 8(2):e57459. https://doi.org/10.1371/journal.pone.0057459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh R, Levitt AL, Rajotte EG et al (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One. 5(12):e14357. https://doi.org/10.1371/journal.pone.0014357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ravoet J, Maharramov J, Meeus I et al (2013) Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8(8):e72443. https://doi.org/10.1371/journal.pone.0072443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Forgách P, Bakonyi T, Tapaszti Z, Nowotny N, Rusvai M (2008) Prevalence of pathogenic bee viruses in Hungarian apiaries: situation before joining the European Union. J Invertebr Pathol 98(2):235–238. https://doi.org/10.1016/j.jip.2007.11.002

    Article  PubMed  Google Scholar 

  51. McMenamin AJ, Flenniken ML. Recently identified bee viruses and their impact on bee pollinators. Curr Opin Insect Sci. https://doi.org/10.1016/j.cois.2018.02.009

  52. Contreras-Gutiérrez MA, Nunes MRT, Guzman H et al (2017) Sinu virus, a novel and divergent orthomyxovirus related to members of the genus Thogotovirus isolated from mosquitoes in Colombia. Virology 501:166–175. https://doi.org/10.1016/j.virol.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  53. Bolling BG, Weaver SC, Tesh RB, Vasilakis N (2015) Insect-specific virus discovery: significance for the arbovirus community. Viruses 7(9):4911–4928. https://doi.org/10.3390/v7092851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levin S, Sela N, Chejanovsky N (2016) Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci Rep 6(1):37710. https://doi.org/10.1038/srep37710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Levin S, Sela N, Erez T et al (2019) New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses 11(2):94. https://doi.org/10.3390/v11020094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coll JM (1995) The glycoprotein G of rhabdoviruses. Arch Virol 140(5):827–851. https://doi.org/10.1007/BF01314961

    Article  CAS  PubMed  Google Scholar 

  57. Kadlec J, Loureiro S, Abrescia NGA, Stuart DI, Jones IM (2008) The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol 15(10):1024–1030. https://doi.org/10.1038/nsmb.1484

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant number 304223/2021–2) and Fundação de apoio à pesquisa do Distrito Federal (FAPDF, Grant number 193001532/2016).

Author information

Authors and Affiliations

Authors

Contributions

Bergmann Morais Ribeiro, Lidia Mariana Fiuza, and Daniel Mendes Pereira Ardisson-Araújo designed the study. Leonardo Assis da Silva, Brenda Rabello de Camargo, Bruno Milhomem Pilati Rodrigues, and Diouneia Lisiane Berlitz performed the research. Leonardo Assis da Silva, Daniel Mendes Pereira Ardisson-Araújo, and Bergmann Morais Ribeiro performed the data analysis. Leonardo Assis da Silva, Daniel Mendes Pereira Ardisson-Araújo, and Bergmann Morais Ribeiro wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Daniel Mendes Pereira Ardisson-Araújo or Bergmann Morais Ribeiro.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: María Martha Martorell

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1771 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.A., de Camargo, B.R., Rodrigues, B.M.P. et al. Exploring viral infections in honey bee colonies: insights from a metagenomic study in southern Brazil. Braz J Microbiol 54, 1447–1458 (2023). https://doi.org/10.1007/s42770-023-01078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01078-z

Keywords

Navigation