Skip to main content

Advertisement

Log in

Efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates. Initially, 24–1 fractional experimental design was carried out to obtain an optimized formulation of liposomes containing CPO (CPO-LipoC), which were then used to prepare stealth liposomes (CPO-LipoS). Liposomal formulations were characterized by their mean size diameter, polydispersity index (PDI), and drug encapsulation efficiency (EE%). Immunosuppressed mice were exposed to CPO-LipoS at 0.5 mg/kg/day for 14 days to verify possible histopathological alterations in the liver and kidneys. Immunosuppressed mice infected with C. neoformans were treated with CPO-LipoS at 0.5 mg/kg/day for 14 days to quantify the fungal burden in spleen, liver, lungs, and brain. CPO-LipoS presented a mean size diameter, PDI, and EE% of 101.4 ± 0.7 nm, 0.307, and 96.4 ± 0.9%, respectively. CPO-LipoS was non-toxic for the liver and kidneys of immunosuppressed mice. At the survival curve, all infected animals submitted to treatment with CPO-LipoS survived until the end of the experiment. Treatment with CPO-LipoS reduced C. neoformans cells in the spleen (59.3 ± 3.4%), liver (75.0 ± 3.6%), lungs (75.7 ± 6.7%), and brain (54.2 ± 3.2%). CPO-LipoS exhibit antifungal activity against C. neoformans, and the encapsulation of CPO into stealth liposomes allows its use as a systemic drug for treating cryptococcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Francisco EC, de Jong AW, Hagen F (2021) Cryptococcosis and cryptococcus. Mycopathologia 186(5):729–731. https://doi.org/10.1007/s11046-021-00577-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hagen F, Khayhan K, Theelen B et al (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48. https://doi.org/10.1016/j.fgb.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  3. Schmiedel Y, Zimmerli S (2016) Common invasive fungal diseases: an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med Wkly 146:w14281. https://doi.org/10.4414/smw.2016.14281

    Article  CAS  PubMed  Google Scholar 

  4. Dantas KC, de Freitas—Xavier RS, Lombardi SCFS et al (2023) Comparative analysis of diagnostic methods for the detection of Cryptococcus neoformans meningitis. PLoS Neglected Tropical Dis 17(3):e0011140. https://doi.org/10.1371/journal.pntd.0011140

    Article  CAS  Google Scholar 

  5. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS (2013) Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother 68(11):2435–2444. https://doi.org/10.1093/jac/dkt221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization (2017) Integrating neglected tropical diseases into global health and development: fourth WHO Report on neglected tropical diseases. World Health Organization. https://apps.who.int/iris/handle/10665/255011. Accessed 13 Apr 2023

  7. Nogueiras-Nieto L, Sobarzo-Sánchez E, Gómez-Amoza JL, Otero-Espinar FJ (2012) Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery. Eur J Pharm Biopharm 80(3):585–595. https://doi.org/10.1016/j.ejpb.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  8. Wan X, Xiang J, Fan H et al (2023) Ciclopirox olamine induces proliferation inhibition and protective autophagy in hepatocellular carcinoma. Pharmaceuticals (Basel) 16(1):113. https://doi.org/10.3390/ph16010113

    Article  CAS  PubMed  Google Scholar 

  9. Lin J, Zangi M, Kumar TVNH et al (2021) Synthetic derivatives of ciclopirox are effective inhibitors of cryptococcus neoformans. ACS Omega 6(12):8477–8487. https://doi.org/10.1021/acsomega.1c00273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oliveira PC, Medeiros CSQ, Macêdo DPC et al (2010) Ciclopirox olamine: an antifungal alternative against cryptococcosis: Ciclopirox olamine: against cryptococcosis. Lett Appl Microbiol 51(5):485–489. https://doi.org/10.1111/j.1472-765X.2010.02914.x

    Article  CAS  PubMed  Google Scholar 

  11. Cavalcanti IMF, Menezes TGC, de Campos LAA et al (2018) Interaction study between vancomycin and liposomes containing natural compounds against methicillin-resistant Staphylococcus aureus clinical isolates. Braz J Pharm Sci 54(2):e00203–e00203. https://doi.org/10.1590/s2175-97902018000200203

    Article  CAS  Google Scholar 

  12. Campos LAA, Francisco Silva Neto A, Cecília Souza Noronha M, Ferreira de Lima M, Macário Ferro Cavalcanti I, Stela Santos-Magalhães N (2023) Zein nanoparticles for drug delivery: preparation methods and biological applications. Int J Pharm 635:122754. https://doi.org/10.1016/j.ijpharm.2023.122754

    Article  CAS  Google Scholar 

  13. Aversa F, Busca A, Candoni A et al (2017) Liposomal amphotericin B (Ambisome®) at beginning of its third decade of clinical use. J Chemother 29(3):131–143. https://doi.org/10.1080/1120009X.2017.1306183

    Article  CAS  PubMed  Google Scholar 

  14. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells Nanomedicine Biotechnol 44(1):381–391. https://doi.org/10.3109/21691401.2014.953633

    Article  CAS  Google Scholar 

  15. Verma AM, Palani S (2010) Development and in-vitro evaluation of liposomal gel of ciclopirox olamine. Int J Pharma Bio Sci 1(2):1–6

    Google Scholar 

  16. Girhepunje K, Pal R, Gevariya H, Behera A, Thirumoorthy N (2010) Ethosomes: a novel vesicular carrier for enhanced dermal delivery of ciclopiroxolamine. Der Pharm Lett 2(1):360–367

    CAS  Google Scholar 

  17. Capilla J, Maffei CML, Clemons KV, Sobel RA, Stevens DA (2006) Experimental systemic infection with Cryptococcus neoformans var. grubii and Cryptococcus gattii in normal and immunodeficient mice. Med Mycol 44(7):601–610. https://doi.org/10.1080/13693780600810040

    Article  PubMed  Google Scholar 

  18. Fontes ACL, Bretas Oliveira D, Santos JRA et al (2017) A subdose of fluconazole alters the virulence of Cryptococcus gattii during murine cryptococcosis and modulates type I interferon expression. Med Mycol 55(2):203–212. https://doi.org/10.1093/mmy/myw056

    Article  CAS  PubMed  Google Scholar 

  19. Cadena PG, Pereira MA, Cordeiro RBS et al (2013) Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim Biophys Acta 1828(2):309–316. https://doi.org/10.1016/j.bbamem.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  20. Galvão AM, Galvão JS, Pereira MA et al (2016) Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: liposomes antioxidants reduces pulmonary damage. Respir Physiol Neurobiol 231:55–62. https://doi.org/10.1016/j.resp.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  21. Hoog GS de, Guarro J, Gené J, Figueras MJ, Botter A (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands

  22. Clinical and Laboratory Standards Institute (2020) M60Ed2. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA

  23. Torres-Rodríguez JM, Alvarado-Ramírez E, Murciano F, Sellart M (2008) MICs and minimum fungicidal concentrations of posaconazole, voriconazole and fluconazole for Cryptococcus neoformans and Cryptococcus gattii. J Antimicrob Chemother 62(1):205–206. https://doi.org/10.1093/jac/dkn132

    Article  CAS  PubMed  Google Scholar 

  24. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol 8(6):1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  Google Scholar 

  25. Baxter JH, Mason MF (1947) Studies of the mechanisms of liver and kidney injury: iv. A comparison of the effects of pyridine and methyl pyridinium chloride in the rat. J Pharmacol Exp Ther 91(4):350–356. Aspet Journals. https://jpet.aspetjournals.org/content/91/4/350. Accessed 13 Apr 2023

  26. Medeiros CS, Pontes-Filho NT, Camara CA et al (2010) Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Braz J Med Biol Res 43:345–349. https://doi.org/10.1590/S0100-879X2010007500012

    Article  CAS  PubMed  Google Scholar 

  27. Gullo FP, Rossi SA, de Sardi CO J, Teodoro VLI, Mendes-Giannini MJS, Fusco-Almeida AM (2013) Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis 32(11):1377–1391. https://doi.org/10.1007/s10096-013-1915-8

    Article  CAS  PubMed  Google Scholar 

  28. Da Silva LB, Bock D, Klafke GB et al (2020) Cryptococcosis in hiv-aids patients from southern brazil: still a major problem. J Mycol Med 30(4):101044. https://doi.org/10.1016/j.mycmed.2020.101044

    Article  PubMed  Google Scholar 

  29. Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE (2021) Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol 19(7):454–466. https://doi.org/10.1038/s41579-021-00511-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bakker-Woudenberg IAJM (2002) Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci. Int J Antimicrob Agents 19(4):299–311. https://doi.org/10.1016/s0924-8579(02)00021-3

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira PC, Medeiros CSQ, Macêdo DPC et al (2010) Ciclopirox olamine: an antifungal alternative against cryptococcosis. Lett Appl Microbiol 51(5):485–489. https://doi.org/10.1111/j.1472-765X.2010.02914.x

    Article  CAS  PubMed  Google Scholar 

  32. Shaikh K, Pawar A, Aphale S, Moghe A (2012) Effect of vesicular encapsulation on in-vitro cytotoxicity of ciclopirox olamine. Int J Drug Deliv 4:139–146

  33. Cavalcanti IMF, Pontes-Neto JG, Kocerginsky PO et al (2015) Antimicrobial activity of β-lapachone encapsulated into liposomes against meticillin-resistant Staphylococcus aureus and Cryptococcus neoformans clinical strains. J Glob Antimicrob Resist 3(2):103–108. https://doi.org/10.1016/j.jgar.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  34. Alhariri M, Azghani A, Omri A (2013) Liposomal antibiotics for the treatment of infectious diseases. Expert Opin Drug Deliv 10(11):1515–1532. https://doi.org/10.1517/17425247.2013.822860

    Article  CAS  PubMed  Google Scholar 

  35. Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M (2018) The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol 2018;9:155. https://doi.org/10.3389/fimmu.2018.00155

  36. Lu R, Hollingsworth C, Qiu J et al (2019) Efficacy of oral encochleated amphotericin b in a mouse model of cryptococcal meningoencephalitis. mBio 10(3):e00724-19. https://doi.org/10.1128/mBio.00724-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wallace TL, Paetznick V, Cossum PA, Lopez-Berestein G, Rex JH, Anaissie E (1997) Activity of liposomal nystatin against disseminated Aspergillus fumigatus infection in neutropenic mice. Antimicrob Agents Chemother 41(10):2238–2243. https://doi.org/10.1128/aac.41.10.2238

  38. Lewis RE, Albert ND, Liao G, Hou J, Prince RA, Kontoyiannis DP (2010) Comparative pharmacodynamics of amphotericin B lipid complex and liposomal amphotericin B in a murine model of pulmonary mucormycosis. Antimicrob Agents Chemother 54(3):1298–1304. https://doi.org/10.1128/AAC.01222-09

    Article  CAS  PubMed  Google Scholar 

  39. Weir SJ, Patton L, Castle K, Rajewski L, Kasper J, Schimmer AD (2011) The repositioning of the anti-fungal agent ciclopirox olamine as a novel therapeutic agent for the treatment of haematologic malignancy. J Clin Pharm Ther 36(2):128–134. https://doi.org/10.1111/j.1365-2710.2010.01172.x

    Article  CAS  PubMed  Google Scholar 

  40. Mihailidou C, Papakotoulas P, Papavassiliou AG, Karamouzis MV (2017) Superior efficacy of the antifungal agent ciclopirox olamine over gemcitabine in pancreatic cancer models. Oncotarget 9(12):10360–10374. https://doi.org/10.18632/oncotarget.23164

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yin J, Che G, Jiang K et al (2022) Ciclopirox olamine exerts tumor-suppressor effects via topoisomerase ii alpha in lung adenocarcinoma. Front Oncol 12:791916. https://doi.org/10.3389/fonc.2022.791916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

POK thanks the Brazilian National Council for Scientific and Technological Development (CNPq) for a PhD scholarship.

Funding

The current study was supported by the CNPq [n. 474777/2013–8, n. 484574/2011-6 and n. 477215/2013-0] and by the Science and Technology Support Foundation of Pernambuco State (FACEPE) [APQ-0814–4.03/17 and APQ-0287-4.03/22].

Author information

Authors and Affiliations

Authors

Contributions

POK designed the project, executed the laboratorial methodology, analyzed the data, and wrote the article. PHSS, HFSL, SDCJ, and PGC assisted in the laboratory experiments, data analysis, and writing the manuscript. RGLN and RPN performed analysis of antifungal activity. NTPF and JVMLF contributed to in vivo studies. IMFC and NSSM supervised the laboratory experiments and contributed to the critic evaluation of the manuscript. All the authors have read the manuscript and approved its submission.

Corresponding authors

Correspondence to Isabella Macário Ferro Cavalcanti or Nereide Stela Santos-Magalhães.

Ethics declarations

Consent to participate

All authors approved the manuscript.

Consent for publication

Written informed consent for publication was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Rosana Puccia

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Kocerginsky, P., dos Santos Soares, P.H., Lyra, H.F.S. et al. Efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates. Braz J Microbiol 54, 1513–1521 (2023). https://doi.org/10.1007/s42770-023-01071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01071-6

Keywords

Navigation