Skip to main content

Advertisement

Log in

Seroprevalence of Dengue, Chikungunya, and Zika viruses antibodies in a cohort of asymptomatic pregnant women in a low-income region of Minas Gerais, Brazil, 2018–2019

  • Clinical Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Dengue, Chikungunya, and Zika viruses are arthropod-borne viruses (arboviruses) that infect millions of individuals in tropical and subtropical regions. In the Americas, arboviruses represent a major public health problem, especially among vulnerable groups such as the elderly, children, and pregnant women. In this study, the seroprevalence of IgM or IgG against these arboviruses in pregnant, young women in the city of Diamantina, Minas Gerais, Brazil, and the influence of sociodemographic factors on the incidence/prevalence of infection in this group were investigated. A cross-sectional investigation was conducted on a total of 135 pregnant women for Dengue and Chikungunya IgM and 88 pregnant women for Zika IgG. Dengue IgM was found on the serum of twenty participants (14.8%) and only one woman (0.7%) tested positive for Chikungunya IgM. Zika IgG was found in three (3.4%) participants and 2 women who tested positive for Zika virus were also positive for Dengue virus IgM. Although the arboviruses seroprevalence was higher frequency among young (20–25 years old), brown and high school women, with a monthly income of 1–3 minimum wages, no association between these sociodemographic factors and arboviruses seroprevalence was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Donalisio MR, Freitas ARR, Zuben APBV (2017) Arboviruses emerging in Brazil: challenges for clinic and implications for public health. Rev Saúde Pública 51:30. https://doi.org/10.1590/S1518-8787.2017051006889

    Article  PubMed  PubMed Central  Google Scholar 

  2. da Silva Neto SR, de Oliveira TT, Teixeira IV et al (2022) Arboviral disease record data-Dengue and Chikungunya, Brazil, 2013–2020. Sci Data 9(1):198. https://doi.org/10.1038/s41597-022-01312-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Argolo AF, Féres VC, Silveira LA et al (2013) Prevalence and incidence of Dengue virus and antibody placental transfer during late pregnancy in central Brazil. BMC Infect Dis 13:1–7. https://doi.org/10.1186/1471-2334-13-254

    Article  CAS  Google Scholar 

  4. do NascimentoEinloft AB, Moreira TR, Wakimoto MD et al (2021) Data quality and arbovirus infection associated factors in pregnant and non-pregnant women of childbearing age in Brazil: a surveillance database analysis. One Health 12:100144. https://doi.org/10.1016/j.onehlt.2021.100244

    Article  Google Scholar 

  5. Sanchez Clemente N, Brickley EB, Paixão ES et al (2020) Zika virus infection in pregnancy and adverse fetal outcomes in São Paulo State, Brazil: a prospective cohort study. Sci Rep 10(1):12673. https://doi.org/10.1038/s41598-020-69235-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charlier C, Beaudoin MC, Couderc T et al (2017) Arboviruses and pregnancy: maternal, fetal, and neonatal effects. Lancet Child Adolesc Health 1(2):134–146. https://doi.org/10.1016/S2352-4642(17)30021-4

    Article  PubMed  Google Scholar 

  7. Calvet G, Aguiar RS, Melo ASO et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16(6):653–660. https://doi.org/10.1016/S1473-3099(16)00095-5

    Article  PubMed  Google Scholar 

  8. Estofolete CF, Terzian AC, Colombo TE et al (2019) Co-infection between Zika and different Dengue serotypes during DENV outbreak in Brazil. J Infect Public Health 12(2):178–181. https://doi.org/10.1016/j.jiph.2018.09.007

    Article  PubMed  Google Scholar 

  9. Marbán-Castro E, Arrieta GJ, Martínez MJ et al (2020) High seroprevalence of antibodies against arboviruses among pregnant women in Rural Caribbean Colombia in the context of the Zika virus epidemic. Antibodies (Basel) 9(4):56. https://doi.org/10.3390/antib9040056

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Huang J, Zhong M et al (2020) Seroprevalence of Dengue virus among pregnant women in Guangdong, China. Viral Immunol 33(1):48–53. https://doi.org/10.1089/vim.2019.0046

    Article  CAS  PubMed  Google Scholar 

  11. Leite RC, Souza AI, Castanha PM et al (2014) Dengue infection in pregnancy and transplacental transfer of anti-Dengue antibodies in Northeast, Brazil. J Clin Virol 60(1):16–21. https://doi.org/10.1016/j.jcv.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  12. Tan PC, Rajasingam G, Devi S, Omar SZ (2008) Dengue infection in pregnancy: prevalence, vertical transmission, and pregnancy outcome. Obstet Gynecol 111(5):1111–1117. https://doi.org/10.1097/AOG.0b013e31816a49fc

    Article  PubMed  Google Scholar 

  13. Sebastião CS, Neto Z, Jandondo D et al (2022) Dengue virus among HIV-infected pregnant women attending antenatal care in Luanda, Angola: an emerging public health concern. Scientific African 17:e01356. https://doi.org/10.1016/j.sciaf.2022.e01356

    Article  Google Scholar 

  14. Gérardin P, Barau G, Michault A et al (2008) Multidisciplinary prospective study of mother-to-child Chikungunya virus infections on the island of La Réunion. PLoS Med 5(3):e60. https://doi.org/10.1371/journal.pmed.0050060

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carvalho FR, Medeiros T, de Oliveira Vianna RA et al (2019) Simultaneous circulation of arboviruses and other congenital infections in pregnant women in Rio de Janeiro, Brazil. Acta Trop 192:49–54. https://doi.org/10.1016/j.actatropica.2019.01.020

    Article  PubMed  Google Scholar 

  16. Brasil P, Pereira JP Jr, Moreira ME et al (2016) Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med 375(24):2321–2334. https://doi.org/10.1056/NEJMoa1602412

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X (2017) Emerging arboviruses: why today? One Health 4:1–13. https://doi.org/10.1016/j.onehlt.2017.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slavov SN, Otaguiri KK, Kashima S, Covas DT (2016) Overview of Zika virus (ZIKV) infection in regards to the Brazilian epidemic. Braz J Med Biol Res 49. https://doi.org/10.1590/1414-431X20165420

  19. Instituto Brasileiro de Geografia e Estatística (IBGE) (2022) Em 2021, pobreza tem aumento recorde e atinge 62,5 milhões de pessoas, maior nível desde 2012. https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/35687-em-2021-pobreza-tem-aumento-recorde-e-atinge-62-5-milhoes-de-pessoas-maior-nivel-desde-2012. Acessed 15 Dec 2022

  20. Souza WV, Albuquerque MDFPM, Vazquez E et al (2018) Microcephaly epidemic related to the Zika virus and living conditions in Recife, Northeast Brazil. BMC Public Health 18:1–7. https://doi.org/10.1186/s12889-018-5039-z

    Article  CAS  Google Scholar 

  21. Freitas RF, de Souza Macedo M, do CarmoLessa A, Pinto NAVD, Teixeira RA (2021) Relationship between the diet quality index in nursing mothers and the fatty acid profile of mature breast milk. Rev Paul Pediatr 39:e2019089. https://doi.org/10.1590/1984-0462/2021/39/2019089

    Article  PubMed  Google Scholar 

  22. Ferreira FR, Caetano DS, do LessaCarmo A et al (2018) Calidad de la dieta de las amamantadoras utilizando el Índice de Alimentación Saludable. Enferm Glob 17(3):144–179. https://doi.org/10.6018/eglobal.17.3.285011

    Article  Google Scholar 

  23. Freitas RF, de Souza Macedo M, do CarmoLessa A et al (2019) Composition in fatty acids of mature milk of nursing mothers. Rev Bras Saude Mater Infant 19(4):817–825. https://doi.org/10.1590/1806-93042019000400005

    Article  Google Scholar 

  24. Macedo M de S (2017) Maternal iodine nutritional status during pregnancy and lactation and its relationship with iodine deficiency in newborns and infants in the city of Diamantina, MG. Thesis, Universidade Federal de Minas Gerais [Portuguese]. https://repositorio.ufmg.br/bitstream/1843/BUOS-B56G47/1/tese_mariana_de_souza_macedo.pdf. Accessed 10 Jan 2023

  25. Secretaria de Estado de Saúde de Minas Gerais (2018) Boletim epidemiológico de monitoramento dos casos de Dengue, Chikungunya e Zika Vírus (17/12). https://www.saude.mg.gov.br/component/gmg/story/10798-boletim-epidemiologico-de-monitoramento-dos-casos-de-Dengue-Chikungunya-e-Zika-virus-17-12. Acessed 18 Dec 2022

  26. Jacques IJAA, Katz L, Sena MA et al (2021) High incidence of Zika or Chikungunya infection among pregnant women hospitalized due to obstetrical complications in Northeastern Brazil-implications for laboratory screening in arbovirus endemic area. Viruses 13(5):744. https://doi.org/10.3390/v13050744

    Article  PubMed  PubMed Central  Google Scholar 

  27. Secretaria de Estado de Saúde de Minas Gerais (2019) Boletim epidemiológico de monitoramento dos casos de Dengue, Chikungunya e Zika (03/12). https://www.saude.mg.gov.br/component/gmg/story/11879-boletim-epidemiologico-de-monitoramento-dos-casos-de-Dengue-Chikungunya-e-Zika-03-12. Acessed 18 Dec 2022

  28. Nascimento LB, Siqueira CM, Coelho GE, Siqueira JB (2017) Symptomatic Dengue infection during pregnancy and livebirth outcomes in Brazil, 2007–13: a retrospective observational cohort study. Lancet Infect Dis 17(9):949–956. https://doi.org/10.1016/S1473-3099(17)30169-X

    Article  PubMed  Google Scholar 

  29. Moraes GH, de Fátima DE, Duarte EC (2013) Determinants of mortality from severe Dengue in Brazil: a population-based case-control study. Am J Trop Med Hyg 88(4):670. https://doi.org/10.4269/ajtmh.11-0774

    Article  PubMed  Google Scholar 

  30. Instituto Brasileiro de Geografia e Estatística (IBGE) (2022) Desigualdades Sociais por Cor ou Raça no Brasil. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101972_informativo.pdf. Acessed 18 Dec 2022

  31. Abreu TT, Novais MCM, Guimarães ICB (2016) Crianças com microcefalia associada a infecção congênita pelo vírus Zika: características clínicas e epidemiológicas num hospital terciário. J Med Biol Sci. https://doi.org/10.9771/cmbio.v15i3.18347

    Article  Google Scholar 

  32. Cuzzubbo AJ, Vaughn DW, Nisalak A et al (1999) Comparison of PanBio Dengue duo enzyme-linked immunosorbent assay (ELISA) and MRL Dengue fever virus immunoglobulin M capture ELISA for diagnosis of Dengue virus infections in Southeast Asia. Clin Diagn Lab Immunol 6(5):705–712. https://doi.org/10.1128/CDLI.6.5.705-712.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lima MDRQ, de Lima RC, de Azeredo EL, Dos Santos FB (2021) Analysis of a routinely used commercial anti-Chikungunya IgM ELISA reveals cross-reactivities with Dengue in Brazil: a new challenge for differential diagnosis? Diagnostics (Basel) 11(5):819. https://doi.org/10.3390/diagnostics11050819

    Article  CAS  PubMed  Google Scholar 

  34. Basile AJ, Goodman C, Horiuchi K et al (2018) Multi-laboratory comparison of three commercially available Zika IgM enzyme-linked immunosorbent assays. J Virol Methods 260:26–33. https://doi.org/10.1016/j.jviromet.2018.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duong V, Lambrechts L, Paul RE et al (2015) Asymptomatic Humans Transmit Dengue Virus to Mosquitoes. Proc Natl Acad Sci 112:14688–14693. https://doi.org/10.1073/pnas.1508114112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Centro Integrado de Pós-Graduação e Pesquisa em Saúde at the Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil, for providing equipment and technical support for experiments.

Funding

This research was funded by Minas Gerais Research Foundation (FAPEMIG), grant number APQ-00824–18, and was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ERV and DBdO; data collection: MSM and RAT; data analyses: JDS, BCCG and ERV; serology assay: JDS, KLSR, TJS, and SLSL; manuscript preparation: JDS and ERV; manuscript review: JDS, BCCG, ERV, and DBdO. Supervision: ERV and DBdO. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Etel Rocha-Vieira or Danilo Bretas de Oliveira.

Ethics declarations

Ethics approval

The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of Universidade Federal dos Vales do Jequitinhonha e Mucuri (protocol code: 2.073.117).

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Flavio Guimaraes Fonseca

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.D., Garcia, B.C.C., Rocha, K.L.S. et al. Seroprevalence of Dengue, Chikungunya, and Zika viruses antibodies in a cohort of asymptomatic pregnant women in a low-income region of Minas Gerais, Brazil, 2018–2019. Braz J Microbiol 54, 1853–1858 (2023). https://doi.org/10.1007/s42770-023-01054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01054-7

Keywords

Navigation