Skip to main content
Log in

Synergistic interaction of clove, cinnamon, and eucalyptus essential oils impregnated in cellulose acetate electrospun fibers as antibacterial agents against Staphylococcus aureus

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The development of antibiotic-free antibacterial strategies applied in the control of bacterial and biofilm proliferation on surfaces is an important topic in discussion in the literature. Essential oils have been explored as isolated and combined components to act as an antibacterial material that inhibits bacterial proliferation, avoiding the contamination of surfaces. Herein, cellulose acetate electrospun fibers impregnated with essential oils of clove, cinnamon and eucalyptus and their combination (clove + cinnamon, cinnamon + eucalyptus and clove + eucalyptus) were explored against the standard strain of Staphylococcus aureus (ATCC 25923). As isolated components, the best performance follows the order clove>cinnamon>eucalyptus essential oil. The association of clove and cinnamon into cellulose acetate electrospun fibers returned a promising and fast antibacterial and antibiofilm activity (improvement in 65%), as a piece of evidence that synergism is observed for the association of essential oils incorporated into electrospun fibers that preserves the antibacterial activity by encapsulation of components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorotíková K, Kameník J, Bogdanovičová K, Křepelová S, Strejček J, Haruštiaková D (2022) Microbial contamination and occurrence of Bacillus cereus sensu lato, Staphylococcus aureus, and Escherichia coli on food handlers’ hands in mass catering: Comparison of the glove juice and swab methods. Food Control 133(September 2021). https://doi.org/10.1016/j.foodcont.2021.108567

  2. Christaki S, Moschakis T, Kyriakoudi A, Biliaderis CG, Mourtzinos I (2021) Recent advances in plant essential oils and extracts: delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci Technol 116(April):264–278. https://doi.org/10.1016/j.tifs.2021.07.029

    Article  CAS  Google Scholar 

  3. Araldi da Silva B, de Sousa Cunha R, Valério A, De Noni Junior A, Hotza D, Gómez González SY (2021) Electrospinning of cellulose using ionic liquids: an overview on processing and applications. Eur Polym J 147(January). https://doi.org/10.1016/j.eurpolymj.2021.110283

  4. Heredia-Guerrero JA, Ceseracciu L, Guzman-Puyol S et al (2018) Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydr Polym 192(December 2017):150–158. https://doi.org/10.1016/j.carbpol.2018.03.050

    Article  CAS  PubMed  Google Scholar 

  5. de Souza EJD, Kringel DH, Guerra Dias AR, da Rosa Zavareze E (2021) Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr Polym 265(December 2020):118068. https://doi.org/10.1016/j.carbpol.2021.118068

    Article  CAS  Google Scholar 

  6. Hadidi M, Pouramin S, Adinepour F, Haghani S, Jafari SM (2020) Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydr Polym 236(November 2019):116075. https://doi.org/10.1016/j.carbpol.2020.116075

    Article  CAS  PubMed  Google Scholar 

  7. Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568. https://doi.org/10.1016/j.carbpol.2014.06.075

    Article  CAS  PubMed  Google Scholar 

  8. Federico L, Filippo M, Bruno T (2021) The essential oil of Lactuca longidentata Moris and its antioxidant and antimicrobial activities. Nat Prod Res 35(23):5452–5458. https://doi.org/10.1080/14786419.2020.1781111

    Article  CAS  PubMed  Google Scholar 

  9. Lin L, Zha G, Wei H et al (2023) Rapid detection of Staphylococcus aureus in food safety using an RPA-CRISPR-Cas12a assay. Food Control 145:109505. https://doi.org/10.1016/j.foodcont.2022.109505

    Article  CAS  Google Scholar 

  10. Siudem P, Zielińska A, Paradowska K (2022) Application of 1H NMR in the study of fatty acids composition of vegetable oils. J Pharm Biomed Anal 212(February):1–8. https://doi.org/10.1016/j.jpba.2022.114658

    Article  CAS  Google Scholar 

  11. El-Naggar ME, Shalaby ES, Abd-Al-Aleem AH, Abu-Saied MA, Youssef AM (2021) Synthesis of environmentally benign antimicrobial dressing nanofibers based on polycaprolactone blended with gold nanoparticles and spearmint oil nanoemulsion. J Mater Res Technol 15:3447–3460. https://doi.org/10.1016/j.jmrt.2021.09.136

    Article  CAS  Google Scholar 

  12. Rao S, Linke L, Magnuson R, Jaunch L, Hyatt DR (2022) Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Heal 15:100407. https://doi.org/10.1016/j.onehlt.2022.100407

    Article  CAS  Google Scholar 

  13. Li H, Li C, Ye Y, Cui H, Lin L (2022) Food Bioscience Inhibition mechanism of cyclo ( L-Phe-L-Pro ) on early stage Staphylococcus aureus biofilm and its application on food contact surface. Food Biosci 49:101968. https://doi.org/10.1016/j.fbio.2022.101968

    Article  CAS  Google Scholar 

  14. Chuesiang P, Sanguandeekul R, Siripatrawan U (2021) Enhancing effect of nanoemulsion on antimicrobial activity of cinnamon essential oil against foodborne pathogens in refrigerated Asian seabass (Lates calcarifer) fillets. Food Control 122(November 2020):107782. https://doi.org/10.1016/j.foodcont.2020.107782

    Article  CAS  Google Scholar 

  15. Syafiq R, Sapuan SM, Zuhri MRM (2021) Antimicrobial activity, physical, mechanical and barrier properties of sugar palm based nanocellulose/starch biocomposite films incorporated with cinnamon essential oil. J Mater Res Technol 11:144–157. https://doi.org/10.1016/j.jmrt.2020.12.091

    Article  CAS  Google Scholar 

  16. De N, Ferreira Soares F, Fabíola D, et al (2011) Antimicrobial edible coating in post-harvest conservation of guava uso de revestimento comestível e conservação pos-colheita de goiaba Trabalho Sinfruit 067 -Simpósio Internacional de Fruticultura -Avanços na Fruticultura (17 a 21 Outubro). Rev Bras Frutic Rev Bras Frutic 281-289. https://doi.org/10.1590/S0100-29452011000500035

  17. Jiang Y, Wang D, Li F, Li D, Huang Q (2020) Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application. Int J Biol Macromol 148:1280–1289. https://doi.org/10.1016/j.ijbiomac.2019.10.103

    Article  CAS  PubMed  Google Scholar 

  18. Milagres de Almeida J, Crippa BL, Martins Alencar de Souza VV, et al (2023) Antimicrobial action of oregano, thyme, clove, cinnamon and black pepper essential oils free and encapsulated against foodborne pathogens. Food Control 144(July 2022). https://doi.org/10.1016/j.foodcont.2022.109356

  19. Samani SS, Khojastehnezhad A, Ramezani M et al (2021) Ultrasensitive detection of micrococcal nuclease activity and Staphylococcus aureus contamination using optical biosensor technology-A review. Talanta 226(November 2020):122168. https://doi.org/10.1016/j.talanta.2021.122168

    Article  CAS  PubMed  Google Scholar 

  20. Obeizi Z, Benbouzid H, Ouchenane S, Yılmaz D, Culha M, Bououdina M (2020) Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Mater Today Commun 25(August). https://doi.org/10.1016/j.mtcomm.2020.101553

  21. Munir H, Mumtaz A, Rashid R et al (2020) Eucalyptus camaldulensis gum as a green matrix to fabrication of zinc and silver nanoparticles: characterization and novel prospects as antimicrobial and dye-degrading agents. J Mater Res Technol 9(6):15513–15524. https://doi.org/10.1016/j.jmrt.2020.11.026

    Article  CAS  Google Scholar 

  22. Rostamabadi H, Assadpour E, Tabarestani HS, Falsafi SR, Jafari SM (2020) Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol 100(January):190–209. https://doi.org/10.1016/j.tifs.2020.04.012

    Article  CAS  Google Scholar 

  23. Vergara-Figueroa J, Alejandro-Martin S, Cerda-Leal F, Gacitúa W (2020) Dual electrospinning of a nanocomposites biofilm: potential use as an antimicrobial barrier. Mater Today Commun 25(September):101671. https://doi.org/10.1016/j.mtcomm.2020.101671

    Article  CAS  Google Scholar 

  24. Chuesiang P, Siripatrawan U, Sanguandeekul R, McClements DJ, McLandsborough L (2019) Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: effect of surfactant concentration on morphology of foodborne pathogens. Food Control 98(November 2018):405–411. https://doi.org/10.1016/j.foodcont.2018.11.024

    Article  CAS  Google Scholar 

  25. Saadat S, Rawtani D, Braganza V (2022) Antimicrobial activity of chitosan film containing nanocomposite of Trachyspermum ammi (ajwain) seed oil loaded Halloysite nanotubes against foodborne pathogenic microorganisms. Appl Clay Sci 226(May):106554. https://doi.org/10.1016/j.clay.2022.106554

    Article  CAS  Google Scholar 

  26. Nazari M, Majdi H, Gholizadeh P et al (2023) An eco-friendly chitosan/cellulose acetate hybrid nanostructure containing Ziziphora clinopodioides essential oils for active food packaging applications. Int J Biol Macromol 235:123885. https://doi.org/10.1016/j.ijbiomac.2023.123885

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Zhang C, Wang X et al (2022) Antifungal electrospinning nanofiber film incorporated with Zanthoxylum bungeanum essential oil for strawberry and sweet cherry preservation. LWT 169:113992. https://doi.org/10.1016/j.lwt.2022.113992

    Article  CAS  Google Scholar 

  28. Shahbazi Y, Shavisi N, Karami N, Lorestani R, Dabirian F (2021) Electrospun carboxymethyl cellulose-gelatin nanofibrous films encapsulated with Mentha longifolia L. essential oil for active packaging of peeled giant freshwater prawn. LWT 152:112322. https://doi.org/10.1016/j.lwt.2021.112322

    Article  CAS  Google Scholar 

  29. The Clinical and Laboratory Standards Institute (2020) Performance Standards for Antimicrobial Susceptibility Testing—30th Edition. CLSI document M02, M07, and M11

  30. Yu Z, Tang J, Khare T, Kumar V (2020) The alarming antimicrobial resistance in ESKAPEE pathogens: can essential oils come to the rescue? Fitoterapia 140(November 2019):104433. https://doi.org/10.1016/j.fitote.2019.104433

    Article  CAS  PubMed  Google Scholar 

  31. Zandraa O, Ngwabebhoh FA, Patwa R et al (2021) Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: physico-chemistry and antimicrobial activity. Int J Pharm 607(2021):120952. https://doi.org/10.1016/j.ijpharm.2021.120952

    Article  CAS  PubMed  Google Scholar 

  32. Herculano ED, de Paula HCB, de Figueiredo EAT, Dias FGB, de Pereira VA (2015) Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. Lwt 61(2):484–491. https://doi.org/10.1016/j.lwt.2014.12.001

    Article  CAS  Google Scholar 

  33. Beikzadeh S, Akbarinejad A, Swift S, Perera J, Kilmartin PA (2020) Cellulose acetate electrospun nanofibers encapsulating Lemon Myrtle essential oil as active agent with potent and sustainable antimicrobial activity. React Funct Polym 157:104769. https://doi.org/10.1016/j.reactfunctpolym.2020.104769

    Article  CAS  Google Scholar 

  34. Sharma N, Jandaik S, Kumar S (2016) Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. An Acad Bras Cienc 88(3):1689–1698. https://doi.org/10.1590/0001-3765201620150713

    Article  CAS  PubMed  Google Scholar 

  35. Láscaris MPS, Aroxa CNF, Pio AR, Gonçalves JLC, Nunes TP (2022) Sinergismo microbiano entre óleos essenciais e conservantes sintéticos utilizados na indústria de alimentos. Res Soc Dev 11(3):e32011326535. https://doi.org/10.33448/rsd-v11i3.26535

    Article  Google Scholar 

  36. Shahbazi Y, Shavisi N (2016) Interactions of Ziziphora clinopodioides and Mentha spicata essential oils with chitosan and ciprofloxacin against common food-related pathogens. LWT - Food Sci Technol 71:364–369. https://doi.org/10.1016/j.lwt.2016.04.011

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Brazilian funding agencies CAPES, FINEP, FACEPE (APQ-0444-1.05/20), and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helinando Pequeno de Oliveira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Solange I. Mussatto

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarante, J.F., da Costa, M.M., da Silva Almeida, J.R.G. et al. Synergistic interaction of clove, cinnamon, and eucalyptus essential oils impregnated in cellulose acetate electrospun fibers as antibacterial agents against Staphylococcus aureus. Braz J Microbiol 54, 1635–1643 (2023). https://doi.org/10.1007/s42770-023-01048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01048-5

Keywords

Navigation