Skip to main content

Advertisement

Log in

Formation of silver halos by Sphingomonas paucimobilis MX8 and its bioleaching of silver from computer keyboard printed circuit boards

  • Biotechnology and Industrial Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Silver (Ag) is currently obtained from primary and secondary sources through hydrometallurgical and pyrometallurgical processes. However, these processes consume high amounts of energy and are environmentally unfriendly. The search for bacteria tolerant with a high leaching capacity for to Ag is therefore a necessary requirement as part of the development of bioleaching technologies with reduced impact on the environment and lower energy expenditure. In this sense, the objective of this research was to evaluate the tolerance of Sphingomonas paucimobilis MX8 to Ag added to nutrient agar, and to determine whether this tolerance could favor the bioleaching of Ag present on the printed circuit boards (PCBs) of computer keyboards. The bacteria Sphingomonas paucimobilis MX8 was cultured in Petri dishes with nutrient agar and four different concentrations of AgNO3 (200, 400, 600, and 800 mg L−1) at 28 °C for 10 days. For the bioleaching experiment, the bacteria were grown in a mineral medium with computer keyboard PCBs for 30 days at room temperature (17 to 22 °C) and centrifugation at 150 rpm. The results indicate that Sphingomonas paucimobilis MX8 is tolerant to Ag and forms a silvery halo around its growth in the presence of this metal. Furthermore, Sphingomonas paucimobilis MX8 was able to bioleach 12% of the Ag found in computer keyboard PCBs. The results obtained could help generate more environmentally friendly silver bioleaching processes in which the silver bioleaching capacity of this bacterium is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546. https://doi.org/10.1002/etc.5620170404

    Article  CAS  Google Scholar 

  2. Silver S, LeT P, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634. https://doi.org/10.1007/s10295-006-0139-7

    Article  CAS  PubMed  Google Scholar 

  3. Lee S, Jun B-H (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:865. https://doi.org/10.3390/ijms20040865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silva LP, Silveira AP, Bonatto CC, Reis IG, Milreu PV (2017) Chapter 26—silver nanoparticles as antimicrobial agents: past, present, and future. In: Ficai A, Grumezescu AM (eds) Nanostructures for antimicrobial therapy. Elsevier, Amsterdam, The Netherlands, pp 577–596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3

  5. Kailasa SK, Park TJ, Rohit JV, Koduru JR (2019) Chapter 14—antimicrobial activity of silver nanoparticles. In: Grumezescu AM. (ed) Nanoparticles in pharmacotherapy. Elsevier, Amsterdam, The Netherlands, pp 461–484. https://doi.org/10.1016/B978-0-12-816504-1.00009-0

  6. Ghodake G, Shinde S, Saratale GD, Kadam A, Saratale RG, Kim DY (2020) Water purification filter prepared by layer-by-layer assembly of paper filter and polypropylene-polyethylene woven fabrics decorated with silver nanoparticles. Fibers Polym 21:751–761. https://doi.org/10.1007/s12221-020-9624-2

    Article  CAS  Google Scholar 

  7. Jouyban A, Rahimpour E (2020) Optical sensors based on silver nanoparticles for determination of pharmaceuticals: an overview of advances in the last decade. Talanta 217:121071. https://doi.org/10.1016/j.talanta.2020.121071

    Article  CAS  PubMed  Google Scholar 

  8. Saini I, Himanshi, Yadav M (2020) Optoelectronic and sensing applications of plasmonic silver nanoparticles. International Journal of Technical Research & Science 2454–2024:33–35. https://doi.org/10.30780/specialissue-ICACCG2020/029

  9. Paul D, Sachan D, Das G (2021) Silver nanoparticles embedded on in-vitro biomineralized vaterite: a highly efficient catalyst with enhanced catalytic activity towards 4-Nitrophenol reduction. Mol Catal 504:111433. https://doi.org/10.1016/j.mcat.2021.111433

    Article  CAS  Google Scholar 

  10. Chakankar M, Jadhav U, Hocheng H (2018) Chapter 6—recovery of silver from industrial wastes: strategies and technologies. In: Sabir S (ed) Silver recovery from assorted spent sources: toxicology of silver ions. World Scientific Publishing Europe, Singapore, pp 177–204

    Chapter  Google Scholar 

  11. Parpalliwar JP, Patil PS, Patil ID, Deshannavar UB (2015) Extraction of silver from waste X-ray films using protease enzyme. Int J Adv Biotechnol Res 6:220–226. http://www.bipublication.com

  12. Merkel SW (2020) The richness of silver ore in the middle ages: a comparative study of historical descriptions and the archaeological evidence. In: Asrih L (ed) Mittelalterliche bergbautechnik in historischen und archäologischen quellen. Ein workshop zur interdisziplinären arbeit in der montanhistorischen forschung. Der Anschnitt Beiheft 45. Verlag Marie Leidorf, Rahden, pp 39–44

  13. Vats MC, Singh SK (2015) Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): original article. Waste Manage 45:280–288. https://doi.org/10.1016/j.wasman.2015.06.002

    Article  CAS  Google Scholar 

  14. Wachter I, Štefko T, Martinka J (2019) Hydrometallurgical recovery of silver from e-waste. Int Multidiscip Sci GeoConf: SGEM Sofia Tomo 19:N.º 4.2. https://doi.org/10.5593/sgem2019V/4.2

    Article  Google Scholar 

  15. Hu J, Tang Y, Ai F, Lin M, Ruan J (2020) Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology. J Hazard Mater 403:23586. https://doi.org/10.1016/j.jhazmat.2020.123586

    Article  CAS  Google Scholar 

  16. Shankar S, More SV, Laxman RS (2010) Recovery of silver from waste X-ray film by alkaline protease from Conidiobolus coronatus. Kathmandu Uni J Sci Eng Technol 6:60–69

    Google Scholar 

  17. Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13. https://doi.org/10.1128/jb.152.1.7-13.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kędziora A, Wieczorek R, Speruda M, Matolínová I, Goszczyński TM, Litwin I, Matolín V, Bugla-Płoskońska G (2021) Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: experimental and computational studies. Front. Microbiol 12:659614. https://doi.org/10.3389/fmicb.2021.659614

    Article  PubMed  PubMed Central  Google Scholar 

  19. Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123:239–244. https://doi.org/10.1007/BF00406656

    Article  CAS  PubMed  Google Scholar 

  20. Gadd GM, Laurence OS, Briscoe DA, Trevors JT (1989) Silver accumulation in Pseudomonas stutzeri AG259. Biol Metals 2:168–173. https://doi.org/10.1007/BF01142556

    Article  CAS  Google Scholar 

  21. Goddard PA, Bull AT (1989) Accumulation of silver by growing and non-growing populations of Citrobacter intermedius B6. Appl Microbiol Biotechnol 31:314–319. https://doi.org/10.1007/BF00258416

    Article  CAS  Google Scholar 

  22. Tsekhmistrenko S, Bityutskii VS, Tsekhmistrenko OS, Horalskyi LP, Tymoshok NO, Spivak MY (2020) Bacterial synthesis of nanoparticles: a green approach. Biosyst Divers 28:9–17. https://doi.org/10.15421/012002

    Article  Google Scholar 

  23. Pooley FD (1982) Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296:642–643. https://doi.org/10.1038/296642a0

    Article  CAS  Google Scholar 

  24. Han DW, Lee MS, Lee MH, Uzawa M, Park JC (2005) The use of silver-coated ceramic beads for sterilization of Sphingomonas sp. in drinking mineral water. World J Microbiol Biotechnol 21:921–924. https://doi.org/10.1007/s11274-004-6721-0

    Article  CAS  Google Scholar 

  25. Seo Y, Hwang J, Kim J, Jeong Y, Hwang MP, Choi J (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomed 9:4621. https://doi.org/10.2147/IJN.S69561

    Article  CAS  Google Scholar 

  26. Huerta-Rosas B, Cano-Rodríguez I, Gamiño-Arroyo Z, Gómez-Castro FI, Carrillo-Pedroza FR, Romo-Rodríguez P, Gutiérrez-Corona JF (2020) Aerobic processes for bioleaching manganese and silver using microorganisms indigenous to mine tailings. World J Microbiol Biotechnol 36:124. https://doi.org/10.1007/s11274-020-02902-6

    Article  CAS  PubMed  Google Scholar 

  27. Ozer G, Ergene A, Icgen B (2013) Biochemical and molecular characterization of strontium-resistant environmental isolates of Pseudomonas fluorescens and Sphingomonas paucimobilis. Geomicrobiol J 30:381–390. https://doi.org/10.1080/01490451.2012.694977

    Article  CAS  Google Scholar 

  28. Ajah HA, Khalaf KJ, Hasan AM (2018) Extracellular biosynthesis of silver nanoparticles using Sphingomonas paucimobilis, Serratia sp. and Pseudomonas aeruginosa and their antimicrobial activity. Indian J Public Health Res Dev 9:911–915

    Article  Google Scholar 

  29. Unger C, Lück C (2012) Inhibitory effects of silver ions on Legionella pneumophila grown on agar, intracellular in Acanthamoeba castellanii and in artificial biofilms. J Appl Microbiol 112:1212–1219. https://doi.org/10.1111/j.1365-2672.2012.05285.x

    Article  CAS  PubMed  Google Scholar 

  30. Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  31. Slawson RM, Lee H, Trevors JT (1990) Bacterial interactions with silver. Biometals 3:151–154. https://doi.org/10.1007/BF01140573

    Article  CAS  Google Scholar 

  32. Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79. https://doi.org/10.1016/0147-619X(92)90008-X

    Article  CAS  PubMed  Google Scholar 

  33. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614. https://doi.org/10.1073/pnas.96.24.13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klaus T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20. https://doi.org/10.1016/S0167-7799(00)01514-6

    Article  Google Scholar 

  35. Panhwar Q, Naher U, Jusop S, Othman R, Latif M, Ismail M (2014) Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. Plos One 9:e97241. https://doi.org/10.1371/journal.pone.0097241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17. https://doi.org/10.1016/j.hydromet.2008.05.016

    Article  CAS  Google Scholar 

  37. Sampranpaiboon P (2017) Silver removal from computer keyboards with metallic replacement. J KMUTNB 27:681–688. https://doi.org/10.14416/j.kmutnb.2017.11.011

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the students who have worked in the Microbial Biotechnology Laboratory of the Institute of Chemistry of the Universidad Veracruzana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalba Argumedo-Delira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Gisele Monteiro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argumedo-Delira, R., Díaz-Martinez, M.E. & Martínez, M.J.G. Formation of silver halos by Sphingomonas paucimobilis MX8 and its bioleaching of silver from computer keyboard printed circuit boards. Braz J Microbiol 54, 1689–1693 (2023). https://doi.org/10.1007/s42770-023-00994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00994-4

Keywords

Navigation