Skip to main content

Advertisement

Log in

Bactericidal activity of silver nanoparticles in drug-resistant bacteria

  • Bacterial, Fungal and Virus Molecular Biology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial resistance to multiple drugs is a worldwide problem that afflicts public health. Various studies have shown that silver nanoparticles are good bactericidal agents against bacteria due to the adherence and penetration of the external bacterial membrane, preventing different vital functions and subsequently bacterial cell death. A systematic review of ScienceDirect, PubMed, and EBSCOhost was conducted to synthesize the literature evidence on the association between the bactericidal property of silver nanoparticles on both resistant Gram-positive and Gram-negative bacteria. Eligible studies were original, comparative observational studies that reported results on drug-resistant bacteria. Two independent reviewers extracted the relevant information. Out of the initial 1 420, 142 studies met the inclusion criteria and were included to form the basis of the analysis. Full-text screening led to the selection of 6 articles for review. The results of this systematic review showed that silver nanoparticles act primarily as bacteriostatic agents and subsequently as bactericides, both in Gram-positive and Gram-negative drug-resistant bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Frost I, van Boeckel TP, Pires J, et al (2019) Global geographic trends in antimicrobial resistance: The role of international travel. J Travel Med 26. https://doi.org/10.1093/JTM/TAZ036

  2. Garnier M (2020) Bactéries multirésistantes: impact sur le pronostic en réanimation. Anesthésie & Réanimation 6:219–225. https://doi.org/10.1016/J.ANREA.2020.01.008

    Article  Google Scholar 

  3. Michaelis C, Grohmann E (2023) Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023 12:328. https://doi.org/10.3390/ANTIBIOTICS12020328

    Article  CAS  Google Scholar 

  4. Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10.3389/FMICB.2018.02928/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482. https://doi.org/10.3934/MICROBIOL.2018.3.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colman AM, Krockow EM, Chattoe-Brown E, Tarrant C (2019) Medical prescribing and antibiotic resistance: a game-theoretic analysis of a potentially catastrophic social dilemma. PLoS One 14. https://doi.org/10.1371/JOURNAL.PONE.0215480

  7. Skandalis N, Maeusli M, Papafotis D, et al (2021) Environmental spread of antibiotic resistance. Antibiotics 10. https://doi.org/10.3390/ANTIBIOTICS10060640

  8. Meier H, Spinner K, Crump L, et al (2023) State of knowledge on the acquisition, diversity, interspecies attribution and spread of antimicrobial resistance between humans, animals and the environment: a systematic review. Antibiotics 12. https://doi.org/10.3390/ANTIBIOTICS12010073

  9. Mutuku C, Gazdag Z, Melegh S (2022) Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 38. https://doi.org/10.1007/S11274-022-03334-0

  10. Rebelo JS, Domingues CPF, Monteiro F et al (2021) Bacterial persistence is essential for susceptible cell survival in indirect resistance, mainly for lower cell densities. PLoS One 16:e0246500. https://doi.org/10.1371/JOURNAL.PONE.0246500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balaban NQ, Helaine S, Lewis K et al (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17:441–448. https://doi.org/10.1038/s41579-019-0196-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ayrapetyan M, Williams TC, Oliver JD (2015) Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 23:7–13. https://doi.org/10.1016/J.TIM.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Mai-Prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6. https://doi.org/10.1038/SREP38610

  14. Zhang G, Meredith TC, Kahne D (2013) On the essentiality of lipopolysaccharide to gram-negative bacteria. Curr Opin Microbiol 16:779–785. https://doi.org/10.1016/J.MIB.2013.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25:1340. https://doi.org/10.3390/MOLECULES25061340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jubeh B, Breijyeh Z, Karaman R (2020) Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 25:2888. https://doi.org/10.3390/MOLECULES25122888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soukarieh F, Gurnani P, Romero M, et al (2023) Design of quorum sensing inhibitor-polymer conjugates to penetrate Pseudomonas aeruginosa biofilms. ACS Macro Lett 314–319. https://doi.org/10.1021/ACSMACROLETT.2C00699

  18. Escobar-Muciño E, Arenas-Hernández MMP, Luna-Guevara ML (2022) Mechanisms of inhibition of quorum sensing as an alternative for the control of E. coli and Salmonella. Microorganisms 10. https://doi.org/10.3390/MICROORGANISMS10050884

  19. Thanh Hoang H, Thu Thi Nguyen T, Minh Do H et al (2022) A novel finding of intra-genus inhibition of quorum sensing in Vibrio bacteria. Scientific Reports 12:1–10. https://doi.org/10.1038/s41598-022-19424-w

    Article  CAS  Google Scholar 

  20. Torres-Cerna CE, Hernández-Vargas EA, Abelardo E, Vargas H (2019) Mathematical Modeling Of The Quorum Sensing In Vibrio harveyi. Mexican Journal of Biomedical Engineering 40:1–10. https://doi.org/10.17488/RMIB.40.1.8

    Article  Google Scholar 

  21. Wang L, Liu L, Wang X, et al (2022) Ruthenium(II) complexes targeting membrane as biofilm disruptors and resistance breakers in Staphylococcus aureus bacteria. Eur J Med Chem 238. https://doi.org/10.1016/J.EJMECH.2022.114485

  22. Boubakri L, Chakchouk-Mtiba A, Naouali O et al (2022) Ruthenium(II) complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands as potential antimicrobial, antioxidant, enzyme inhibition, and antiproliferative agents. J Coord Chem 75:645–667. https://doi.org/10.1080/00958972.2022.2060745

    Article  CAS  Google Scholar 

  23. Qi YK, Tang X, Wei NN, et al (2022) Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 28. https://doi.org/10.1002/PSC.3428

  24. Kali A (2015) Teixobactin: a novel antibiotic in treatment of gram positive bacterial infections. J Clin Diagn Res 9:DL01. https://doi.org/10.7860/JCDR/2015/13033.5720

  25. Hover BM, Kim SH, Katz M et al (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nature Microbiology 3:415–422. https://doi.org/10.1038/s41564-018-0110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. González-Torres V, Hernández-Guevara E, Castillo-Martínez NA et al (2021) Antibacterial activity analysis of hydroxyapatite based materials with fluorine and silver Mex. J Biomed Eng 42(49):57. https://doi.org/10.17488/RMIB.42.2.4

    Article  Google Scholar 

  27. Lara KM, Bárcenas GL, Hernández EL et al (2017) Preparation and characterization of copper chitosan nanocomposites with antibacterial activity for applications in tissue engineering. Mex J Biomed Eng 38:306–313. https://doi.org/10.17488/RMIB.38.1.26

    Article  Google Scholar 

  28. López MA, Gregorio EV, Cota LQ et al (2017) Effect of microemulsions of essential oils on human erythrocyte and pathogens bacteria. Mex J Biomed Eng 38:247–254. https://doi.org/10.17488/RMIB.38.1.19

    Article  Google Scholar 

  29. Allavena G, Debellis D, Marotta R et al (2018) A broad-spectrum antibiotic, DCAP, reduces uropathogenic Escherichia coli infection and enhances vorinostat anticancer activity by modulating autophagy. Cell Death Disease 9:1–13. https://doi.org/10.1038/s41419-018-0786-4

    Article  CAS  Google Scholar 

  30. Pantel L, Florin T, Dobosz-Bartoszek M et al (2018) Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol Cell 70:83-94.e7. https://doi.org/10.1016/J.MOLCEL.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  31. Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z et al (2022) Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci 29:1–17. https://doi.org/10.1186/S12929-022-00806-1/TABLES/2

    Article  Google Scholar 

  32. Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423. https://doi.org/10.1038/NRMICRO2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ubeda C, Pamer EG (2012) Antibiotics, microbiota, and immune defense. Trends Immunol 33:459. https://doi.org/10.1016/J.IT.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panwar RB, Sequeira RP, Clarke TB (2021) Microbiota-mediated protection against antibiotic-resistant pathogens. Genes Immunity 22:255–267. https://doi.org/10.1038/s41435-021-00129-5

    Article  CAS  PubMed  Google Scholar 

  35. Lima LM, Silva BNM da, Barbosa G, Barreiro EJ (2020) β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem 208. https://doi.org/10.1016/J.EJMECH.2020.112829

  36. Böttger EC, Crich D (2020) Aminoglycosides: time for the resurrection of a neglected class of antibacterials? ACS Infect Dis 6:168–172.  https://doi.org/10.1021/ACSINFECDIS.9B00441

    Article  PubMed  Google Scholar 

  37. Roberts MC (2019) Tetracyclines. Bacterial resistance to antibiotics: from molecules to man 101–124. https://doi.org/10.1002/9781119593522.CH5

  38. Boutin JA, Altieri F, Dibavar AS et al (2023) DNA gyrase as a target for quinolones. Biomedicines 11:371. https://doi.org/10.3390/BIOMEDICINES11020371

    Article  Google Scholar 

  39. Pham TDM, Ziora ZM, Blaskovich MAT (2019) Quinolone antibiotics Medchemcomm 10:1719–1739. https://doi.org/10.1039/C9MD00120D

    Article  CAS  PubMed  Google Scholar 

  40. Bush NG, Diez-Santos I, Abbott LR, Maxwell A (2020) Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules 25. https://doi.org/10.3390/MOLECULES25235662

  41. Vázquez-Laslop N, Mankin AS (2018) How macrolide antibiotics work. Trends Biochem Sci 43:668–684. https://doi.org/10.1016/J.TIBS.2018.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khabibullina NF, Tereshchenkov AG, Komarova ES, et al (2019) Structure of dirithromycin bound to the bacterial ribosome suggests new ways for rational improvement of macrolides. Antimicrob Agents Chemother 63. https://doi.org/10.1128/AAC.02266-18

  43. Svetlov MS, Koller TO, Meydan S, et al (2021) Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nat Commun 12. https://doi.org/10.1038/S41467-021-23068-1

  44. Myers AG, Clark RB (2021) Discovery of macrolide antibiotics effective against multi-drug resistant gram-negative pathogens. Acc Chem Res 54:1635–1645. https://doi.org/10.1021/ACS.ACCOUNTS.1C00020/ASSET/IMAGES/LARGE/AR1C00020_0005.JPEG

    Article  CAS  PubMed  Google Scholar 

  45. Kim M, Park J, Kang M et al (2021) Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: one Health perspective. J Microbiol 59:535–545. https://doi.org/10.1007/S12275-021-1085-9

    Article  CAS  PubMed  Google Scholar 

  46. González L, Chapa C (2022) Drug-resistant bacteria. figshare 19407557. https://doi.org/10.6084/m9.figshare.19407557

  47. Cui X, Lü Y, Yue C (2021) Development and research progress of anti-drug resistant bacteria drugs. Infect Drug Resist 14:5575–5593. https://doi.org/10.2147/IDR.S338987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baindara P, Mandal SM (2019) Antimicrobial peptides and vaccine development to control multi-drug resistant bacteria. Protein Pept Lett 26:324–331. https://doi.org/10.2174/0929866526666190228162751

    Article  CAS  PubMed  Google Scholar 

  49. Hernandez-Rodriguez P, Baquero LP (2021) Combination therapy as a strategy to control infections caused by multi-resistant bacteria: current review. Curr Drug Targets 23:260–265. https://doi.org/10.2174/1389450122666210614122352

    Article  CAS  Google Scholar 

  50. Gupta V, Datta P (2019) Next-generation strategy for treating drug resistant bacteria: antibiotic hybrids. Indian J Med Res 149:97–106. https://doi.org/10.4103/IJMR.IJMR_755_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tse Sum Bui B, Auroy T, Haupt K (2022) Fighting antibiotic-resistant bacteria: promising strategies orchestrated by molecularly imprinted polymers. Angewandte Chemie - International Edition 61. https://doi.org/10.1002/ANIE.202106493

  52. Suganya T, Packiavathy IASV, Aseervatham GSB, et al (2022) Tackling multiple-drug-resistant bacteria with conventional and complex phytochemicals. Front Cell Infect Microbiol 12. https://doi.org/10.3389/FCIMB.2022.883839

  53. Cui F, Ning Y, Wang D, et al (2022) Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Crit Rev Food Sci Nutr 1–17. https://doi.org/10.1080/10408398.2022.2105801

  54. Begum S, Pramanik A, Davis D et al (2020) 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega 5:3116–3130. https://doi.org/10.1021/ACSOMEGA.9B03919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munir MU, Ahmad MM (2022) Nanomaterials aiming to tackle antibiotic-resistant bacteria. Pharmaceutics 14. https://doi.org/10.3390/PHARMACEUTICS14030582

  56. Iravani S (2022) Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 1–13. https://doi.org/10.1080/1040841X.2022.2108309

  57. Gudkov S, v., Burmistrov DE, Smirnova V v, et al (2022) A mini review of antibacterial properties of Al2O3 nanoparticles. Nanomaterials 12:2635. https://doi.org/10.3390/NANO12152635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15. https://doi.org/10.1186/S12951-017-0308-Z

  59. Wang H, Wang Y-W, Han K et al (2015) The joint antibacterial effect of silver nanoparticles and antibiotics. Toxicol Lett 238:S211. https://doi.org/10.1016/J.TOXLET.2015.08.627

    Article  Google Scholar 

  60. Wang YW, Tang H, Wu D et al (2016) Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano 3:788–798. https://doi.org/10.1039/C6EN00031B

    Article  CAS  Google Scholar 

  61. Mohammed MA, Elgammal EW, Gaara AH, el Raey MA (2022) Synergistic effect of Silver and ZnO nanoparticles green synthesized by Vitis vinifera stem extract with ampicillin against some pathogenic microbes. Egypt J Chem 65:697–709. https://doi.org/10.21608/EJCHEM.2021.101453.4716

    Article  Google Scholar 

  62. Ali S, Perveen S, Shah MR, et al (2020) Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: a strategy against antibiotic-resistant bacteria. Journal of Nanoparticle Research 22. https://doi.org/10.1007/S11051-020-04939-Y

  63. Salunke BK, Sawant SS, Kim BS (2016) Enhancement of antibacterial effect by biosynthesized silver nanoparticles with antibiotics. J Nanosci Nanotechnol 16:7191–7194. https://doi.org/10.1166/JNN.2016.11321

    Article  CAS  Google Scholar 

  64. Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225. https://doi.org/10.2147/IJN.S132163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Makabenta JMV, Nabawy A, Li CH et al (2021) Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 19:23. https://doi.org/10.1038/S41579-020-0420-1

    Article  CAS  PubMed  Google Scholar 

  66. Wahab S, Khan T, Adil M, Khan A (2021) Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 7. https://doi.org/10.1016/J.HELIYON.2021.E07448

  67. Gudikandula K, CharyaMaringanti S (2016) Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci 11:714–721. https://doi.org/10.1080/17458080.2016.1139196

    Article  CAS  Google Scholar 

  68. Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10:115. https://doi.org/10.5599/ADMET.1172

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227. https://doi.org/10.2147/IJN.S121956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. More PR, Pandit S, De Filippis A et al (2023) Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 11:369. https://doi.org/10.3390/MICROORGANISMS11020369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. González L (2021). Protocol for a systematic review of the bactericidal activity of silver nanoparticles on drug-resistant bacteria. https://doi.org/10.5281/ZENODO.6970130

  72. Yuan YG, Peng QL, Gurunathan S (2017) Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sc 18:569. https://doi.org/10.3390/IJMS18030569

    Article  Google Scholar 

  73. Pal S, Tak YK, Song JM (2007) Does the Antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712. https://doi.org/10.1128/AEM.02218-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao M, Sun L, Wang Z, Zhao Y (2013) Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater Sci Eng C Mater Biol Appl 33:397–404. https://doi.org/10.1016/J.MSEC.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  75. Abbaszadegan A, Ghahramani Y, Gholami A, et al (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 2015. https://doi.org/10.1155/2015/720654

  76. Lok CN, Ho CM, Chen R et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. https://doi.org/10.1021/PR0504079/SUPPL_FILE/PR0504079SI20051117_093733.PDF

    Article  CAS  PubMed  Google Scholar 

  77. Agnihotri S, Mukherji S, Mukherji S (2013) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983. https://doi.org/10.1039/C3RA44507K

    Article  Google Scholar 

  78. Cavassin ED, de Figueiredo LFP, Otoch JP et al (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnolgy 13:1–16. https://doi.org/10.1186/S12951-015-0120-6

    Article  Google Scholar 

  79. Arul D, Balasubramani G, Balasubramanian V et al (2017) Antibacterial efficacy of silver nanoparticles and ethyl acetate’s metabolites of the potent halophilic (marine) bacterium. Bacillus cereus A30 on multidrug resistant bacteria 111:367–382

    CAS  Google Scholar 

  80. Mahmod MR, Junayed A, Bhowmick C et al (2021) Antibacterial activity of silver nanoparticles synthesized from leaf and flower extracts of galinsoga formosa. J Adanced Biotechn Experimen Ther 4:178–186. https://doi.org/10.5455/JABET.2021.D118

    Article  Google Scholar 

  81. Mancuso G, Midiri A, Gerace E, Biondo C (2021) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10:1310. https://doi.org/10.3390/PATHOGENS10101310/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu G, Qin M (2022) Analysis of the distribution and antibiotic resistance of pathogens causing infections in hospitals from 2017 to 2019. Evidence-based Complementary and Alternative Medicine 2022. https://doi.org/10.1155/2022/3512582

  83. Guo Y, Song G, Sun M et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 10:107. https://doi.org/10.3389/FCIMB.2020.00107/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109. https://doi.org/10.1016/J.GENDIS.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qin S, Xiao W, Zhou C et al (2022) Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 7:1–27. https://doi.org/10.1038/s41392-022-01056-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pang Z, Raudonis R, Glick BR et al (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  87. Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Investig 111:1265. https://doi.org/10.1172/JCI18535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pantosti A, Sanchini A, Monaco M (2007) Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2:323–334. https://doi.org/10.2217/17460913.2.3.323

    Article  CAS  PubMed  Google Scholar 

  89. Peacock SJ, Paterson GK (2015) Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84:577–601. https://doi.org/10.1146/ANNUREV-BIOCHEM-060614-034516

    Article  CAS  PubMed  Google Scholar 

  90. Dropulic LK, Lederman HM (2016) overview of infections in the immunocompromised host. Microbiol Spectr 4. https://doi.org/10.1128/MICROBIOLSPEC.DMIH2-0026-2016

  91. Yung DBY, Sircombe KJ, Pletzer D (2021) Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 116:1–15. https://doi.org/10.1111/MMI.14699

    Article  CAS  PubMed  Google Scholar 

  92. Das B, Dash SK, Mandal D et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876. https://doi.org/10.1016/j.arabjc.2015.08.008

    Article  CAS  Google Scholar 

  93. Paosen S, Jindapol S, Soontarach R, Voravuthikunchai SP (2019) Eucalyptus citriodora leaf extract-mediated biosynthesis of silver nanoparticles: broad antimicrobial spectrum and mechanisms of action against hospital-acquired pathogens. APMIS 127:764–778. https://doi.org/10.1111/APM.12993

    Article  CAS  PubMed  Google Scholar 

  94. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2. https://doi.org/10.1101/CSHPERSPECT.A000414

  95. Benedetto Tiz D, Kikelj D, Zidar N (2018) Overcoming problems of poor drug penetration into bacteria: challenges and strategies for medicinal chemists. Expert Opin Drug Discov 13:497–507. https://doi.org/10.1080/17460441.2018.1455660

    Article  CAS  PubMed  Google Scholar 

  96. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808. https://doi.org/10.1016/J.BBAPAP.2008.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the NANOMEDICINA-UACJ research group for their constant support and feedback at all stages of this research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chapa González.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Roxane M Piazza

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapa González, C., González García, L.I., Burciaga Jurado, L.G. et al. Bactericidal activity of silver nanoparticles in drug-resistant bacteria. Braz J Microbiol 54, 691–701 (2023). https://doi.org/10.1007/s42770-023-00991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00991-7

Keywords

Navigation