Skip to main content

Advertisement

Log in

Phenotypic and genetic screening of Klebsiella pneumoniae isolates from human UTI patients for beta-lactamases and their genetic diversity analysis by ERIC and REP PCRs

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is one of the major nosocomial pathogens responsible for pneumoniae, septicaemia, liver abscesses, and urinary tract infections. Coordinated efforts by antibiotic stewardship and clinicians are underway to curtail the emergence of antibiotic-resistant strains. The objective of the present study is to characterize K. pneumoniae strains through antibiotic resistance screening for production of beta-lactamases (β-lactamases) such as extended spectrum beta lactamases (ESBLs), AmpC β-lactamases, and carbapenemases by phenotypic and genotypic methods and genetic fingerprinting by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and repetitive element palindromic PCR (REP-PCR). A total of 85 K. pneumoniae strains isolated from 504 human urinary tract infections (UTI) were used in this study. Only 76 isolates showed positive in phenotypic screening test (PST), while combination disc method (CDM) as phenotypic confirmatory test (PCT) confirmed 72 isolates as ESBL producers. One or more β-lactamase genes were detected by PCR in 66 isolates (91.66%, 66/72) with blaTEM gene being the most predominant (75.75%, 50/66). AmpC genes could be detected in 21 isolates (31.8%, 21/66) with FOX gene being the predominant (24.24%, 16/66), whereas NDM-I was detected in a single strain (1.51%, 1/66). Genetic fingerprinting using ERIC-PCR and REP-PCR revealed wide heterogeneity among β-lactamase producing isolates with discriminatory power of 0.9995 and 1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in manuscript.

References

  1. Ito H, de Sousa AT, dos Santos Costa MT, Makino H, Cândido SL, de Godoy MI, Lincopan N, Nakazato L, Dutra V (2021) Multidrug-resistant mcr-1 gene-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a cat. Braz J Microbiol 52(2):1043–1046. https://doi.org/10.1007/s42770-021-00466-7

    Article  CAS  Google Scholar 

  2. Bobbadi S, Chinnam BK, Reddy PN, Kandhan S (2021) Analysis of antibiotic resistance and virulence patterns in Klebsiella pneumoniae isolated from human urinary tract infections in India. Lett Appl Microbiol 73:590–598. https://doi.org/10.1111/lam.13544

    Article  CAS  PubMed  Google Scholar 

  3. Mobasseri G, Thong KL, Rajasekaram G, Teh CSJ (2020) Molecular characterization of extended-spectrum β-lactamase-producing Klebsiella pneumoniae from a Malaysian hospital. Braz J Microbiol 51(1):189–195. https://doi.org/10.1007/s42770-019-00208-w

    Article  CAS  PubMed  Google Scholar 

  4. Miftode IL, Nastase EV, Miftode RȘ, Miftode EG, Iancu LS, Luncă C, Păduraru DA, Costache I, Stafie CS, Dorneanu OS (2021) Insights into multidrug-resistant K. pneumoniae urinary tract infections: from susceptibility to mortality. Exp Ther Med 22:1–9. https://doi.org/10.3892/etm.2021.10520

    Article  CAS  Google Scholar 

  5. Vachvanichsanong P, McNeil EB, Dissaneewate P (2021) Extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae urinary tract infections. Epidemiol Infect 149:E12. https://doi.org/10.1017/S0950268820003015

    Article  CAS  Google Scholar 

  6. El-Hady SA, Adel LA (2015) Occurrence and detection of AmpC β-lactamases among Enterobacteriaceae isolates from patients at Ain Shams University Hospital. Egypt J Med Hum Genet 16:239–244. https://doi.org/10.1016/j.ejmhg.2015.03.001

    Article  Google Scholar 

  7. Sampaio SCF, Bigelli Carvalho R, Mimica MJ, de Lima AV, Lima KD, Rocha DA, Sampaio JL (2021) Genotyping of paired KPC-producing Klebsiella pneumoniae isolates with and without divergent polymyxin B susceptibility profiles. Braz J Microbiol 52:1981–1989. https://doi.org/10.1007/s42770-021-00600-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wasfi R, Elkhatib WF, Ashour HM (2016) Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep 6:1–11. https://doi.org/10.1038/srep38929

    Article  CAS  Google Scholar 

  9. Voulgari E, Gartzonika C, Vrioni G, Politi L, Priavali E, Levidiotou-Stefanou S, Tsakris A (2014) The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J Antimicrob Chemother 69:2091–2097. https://doi.org/10.1093/jac/dku105

    Article  CAS  PubMed  Google Scholar 

  10. Barus T, Hanjaya I, Sadeli J, Lay BW, Suwanto A, Yulandi A (2013) Genetic diversity of Klebsiella spp. isolated from tempe based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). HAYATI. J Biosci 20(4):171–176. https://doi.org/10.4308/hjb.20.4.171

    Article  Google Scholar 

  11. Tobes R, Pareja E (2006) Bacterial repetitive extragenic palindromic sequences are DNA targets for insertion sequence elements. BMC Genom 7:1–12. https://doi.org/10.1186/1471-2164-7-62

    Article  CAS  Google Scholar 

  12. Santiago GS, Gonçalves D, da Silva CI (2020) de Mattos de Oliveira Coelho S, Neto Ferreira H (2020) Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. Braz J Microbiol 51:1807–1812. https://doi.org/10.1007/s42770-020-00355-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drieux L, Brossier F, Sougakoff W, Jarlier V (2008) Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14:90–103. https://doi.org/10.1111/j.1469-0691.2007.01846.x

    Article  CAS  PubMed  Google Scholar 

  14. Bauer AW (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:149–158

    Article  Google Scholar 

  15. CLSI (2014) Clinical and laboratory standards institute, performance standards for antimicrobial susceptibility testing. Twenty-fourth Informational Supplement, Wayne, PA, pp M100–MS24

    Google Scholar 

  16. Bobbadi S, Kiranmayi Chinnam B, Nelapati S, Tumati SR, Kandhan S, Gottapu C, Boddu SV (2020) Occurrence and genetic diversity of ESBL producing Klebsiella species isolated from livestock and livestock products. J Food Saf 40(1):e12738. https://doi.org/10.1111/jfs.12738

    Article  Google Scholar 

  17. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65:490–495. https://doi.org/10.1093/jac/dkp498

    Article  CAS  PubMed  Google Scholar 

  18. Manoharan A, Sugumar M, Kumar A, Jose H, Mathai D, ICMR-ESBL study group (2012) Phenotypic & molecular characterization of AmpC β-lactamases among Escherichia coli, Klebsiella spp. & Enterobacter spp. from five Indian Medical Centers. Indian J Med Res 135:359

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nordmann P, Poirel L, Carrër A, Toleman MA, Walsh TR (2011) How to detect NDM-1 producers. J Clin Microbiol 49:718–721. https://doi.org/10.1128/JCM.01773-10

    Article  PubMed  PubMed Central  Google Scholar 

  20. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831. https://doi.org/10.1093/nar/19.24.6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ryberg A, Olsson C, Ahrné S, Monstein HJ (2011) Comparison of (GTG) 5-oligonucleotide and ribosomal intergenic transcribed spacer (ITS)-PCR for molecular typing of Klebsiella isolates. J Microbiol Methods 84:183–188. https://doi.org/10.1016/j.mimet.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  22. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466. https://doi.org/10.1128/jcm.26.11.2465-2466.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Purighalla S, Esakimuthu S, Reddy M, Varghese GK, Richard VS, Sambandamurthy VK (2017) Discriminatory power of three typing techniques in determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary hospital. Indian J Med Microbiol 35:361–368. https://doi.org/10.4103/ijmm.IJMM_16_308

    Article  PubMed  Google Scholar 

  24. Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB, Ahmed G (2014) Prevalence of blaTEM, blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol 57:249–254. https://doi.org/10.4103/0377-4929.134698

    Article  PubMed  Google Scholar 

  25. Pishtiwan AH, Khadija KM (2019) Prevalence of blaTEM, blaSHV and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from Thalassemia patients in Erbil. Iraq Mediterr J 11:1–7. https://doi.org/10.4084/MJHID.2019.041

    Article  Google Scholar 

  26. Maleki N, Tahanasab Z, Mobasheriazadeh S, Rezaei A, Faghri J (2018) Prevalence of CTX-M and TEM β-lactamases in Klebsiella pneumoniae isolates from patients with Urinary Tract Infection, Al-Zahra Hospital, Isfahan. Iran. Adv Biomed Res 7:10. https://doi.org/10.4103/abr.abr_17_17

    Article  CAS  PubMed  Google Scholar 

  27. Lim KT, Yeo CC, Yasin RM, Balan G, Thong KL (2009) Characterization of multidrug-resistant and extended-spectrum b-lactamase-producing Klebsiella pneumoniae strains from Malaysian hospitals. J Med Microbiol 58:1463–1469. https://doi.org/10.1099/jmm.0.011114-0

    Article  PubMed  Google Scholar 

  28. Romero EDV, Padila TP, Hernandez AH, Grande RP, Vazquez MF, Garcia IG, Rodrigurz JAG, Bellido JLM (2007) Prevalence of clinical strains of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum b-lactamases. Diagn Microbiol Infect Dis 59:433–437. https://doi.org/10.1016/j.diagmicrobio.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  29. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Zdanowicz IK, Luzzaro F, Poirel L, Woodford N (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174. https://doi.org/10.1093/jac/dkl483

    Article  CAS  PubMed  Google Scholar 

  30. Cabral AB, Melo RCA, Maciel MAV, Lopes ACS (2012) Multidrug resistance genes, including blaKPC, blaCTX-M-2' among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 45:572–578. https://doi.org/10.1590/S0037-86822012000500007

    Article  PubMed  Google Scholar 

  31. Ben-Hamouda T, Foulan T, Ben-Cheikh-Masmoudi A, Fendri C, Belhadj O, Ben-Mahrez K (2003) Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisan neonatal ward. J Med Microbiol 52:427–433. https://doi.org/10.1099/jmm.0.04981-0

    Article  CAS  PubMed  Google Scholar 

  32. Pai H, Kang CI, Byeon JH, Lee KD, Park WB, Kim HB, Kim EC, Oh MD, Kang WC (2004) Epidemiology and clinical features of bloodstream infections caused by AmpC-type b-lactamase producing Klebsiella pneumoniae. Antimicrob Agents Chemother 48:3720–3728. https://doi.org/10.1128/AAC.48.10.3720-3728.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lovison OA, Rau RB, Lima-Morales D, Almeida EK, Crispim EN, Barreto F, Barth AL (2020) High-performance method to detection of Klebsiella pneumoniae Carbapenemase in Enterobacterales by LC-MS/MS. Braz J Microbiol 51:1029–1035. https://doi.org/10.1007/s42770-019-00222-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohammed AB, Anwar KA (2022) Phenotypic and genotypic detection of extended spectrum beta lactamase enzyme in Klebsiella pneumoniae. PLoS one 17(9):e0267221. https://doi.org/10.1371/journal.pone.0267221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeynudin A, Pritsch M, Schubert S, Messerer M, Liegl G, Hoelscher M, Belachew T, Wieser A (2018) Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma. Ethiopia. BMC Infect Dis 18:524. https://doi.org/10.1186/s12879-018-3436-7

    Article  CAS  PubMed  Google Scholar 

  36. Stuart JC, Leverstein-Van Hall MA (2010) Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents 36:205–210. https://doi.org/10.1016/j.ijantimicag.2010.05.014

    Article  CAS  Google Scholar 

  37. Ejaz H, ul Haq I, Mahmood S, Zafar A, Javed MM (2013) Detection of extended-spectrum β-lactamases in Klebsiella pneumoniae: Comparison of phenotypic characterization methods. Pak J Med Sci 29:768–772. https://doi.org/10.12669/pjms.293.3576

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sarojamma V, Ramakrishna V (2011) Prevalence of ESBL-producing Klebsiella pneumoniae isolates in Tertiary Care Hospital. International Scholarly Research Notices 2011:318348. https://doi.org/10.5402/2011/318348

    Article  CAS  Google Scholar 

  39. Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R (2017) ESBL production among E. coli and Klebsiella spp. causing urinary tract infection: a hospital-based study. Open Microbiol J 11:23–30. https://doi.org/10.2174/1874285801711010023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar P, Shastri A, Anandarshi V, Gupta P (2019) Study of extended spectrum beta lactamase producing Klebsiella pneumoniae from various clinical samples at tertiary care Hospital, Jaipur. J Med Sci Clin Res 7:93–100. https://doi.org/10.18535/jmscr/v7i9.15

    Article  Google Scholar 

  41. Mirzaie A, Ranjbar R (2021) Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Expr 11:122. https://doi.org/10.1186/s13568-021-01282-w

    Article  CAS  Google Scholar 

  42. Ranjbar R, Afshar D (2019) Evaluation of (GTG) 5-PCR for genotyping of Klebsiella pneumonia strains isolated from patients with urinary tract infections. Iran J Public Health 48(10):1879–1884

    PubMed  PubMed Central  Google Scholar 

  43. Zhang S, Yang G, Ye Q, Wu Q, Zhang J, Huang Y (2018) Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Front Microbiol 9:289. https://doi.org/10.3389/fmicb.2018.00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sedighi P, Zarei O, Karimi K, Taheri M, Karami P, Shokoohizadeh L (2020) Molecular typing of Klebsiella pneumoniae clinical isolates by Enterobacterial repetitive intergenic consensus polymerase chain reaction. Int J Microbiol 2020:8894727. https://doi.org/10.1155/2020/8894727

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the administration and management of Vignan’s Foundation for Science, Technology and Research (Deemed to be University) as well as NTR College of Veterinary Science, Gannavaram for their support during the study period. PNR thanks Principal, Dr. V.S. Krishna Government Degree College for his encouragement and support during the study period.

Funding

This work was funded by the Department of Science and Technology, Ministry of Science and Technology (grant/award no: SERB/F/4296/2016-17).

Author information

Authors and Affiliations

Authors

Contributions

SB maintained the isolates and performed the experiments. MNB helped in analysing the data and revising of the manuscript. BKC performed the final revision of the manuscript and approved the final version. PNR is involved in analysing the data, preparation, and final approval of manuscript. SK helped write the initial draft of the manuscript and analyse the data partially.

Corresponding author

Correspondence to Prakash Narayana Reddy.

Ethics declarations

Consent to participate

All authors gave formal consent to participate in the study

Consent for publication

All the authors read and approved the manuscript in its present format

Competing interests

The authors declare no competing interests

Additional information

Responsible Editor: Fernando R. Pavan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobbadi, S., Bobby, M.N., Chinnam, B.K. et al. Phenotypic and genetic screening of Klebsiella pneumoniae isolates from human UTI patients for beta-lactamases and their genetic diversity analysis by ERIC and REP PCRs. Braz J Microbiol 54, 1723–1736 (2023). https://doi.org/10.1007/s42770-023-00984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00984-6

Keywords

Navigation