Skip to main content
Log in

In vitro nematicidal and acaricidal effect of biosurfactants produced by Bacillus against the root-knot nematode Nacobbus aberrans and the dust mite Tyrophagus putrescentiae

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the present study, the nematicidal and acaricidal activity of three biosurfactants (BS) produced by strains of the Bacillus genus was evaluated. The BS produced by the Bacillus ROSS2 strain presented a mortality of 39.29% in juveniles (J2) of Nacobbus aberrans at a concentration of 30 mg/mL, this same strain is the one that presented the highest mortality in Tyrophagus putrescentiae, which was 57.97% at a concentration of 39 mg/mL. The BS were qualitatively identified by thin layer chromatography and are lipid in nature based on the retention factor (Rf). While the GC-MS analysis identified two main compounds that are 4,7-Methano-1H-indene-2,6-dicarboxylic acid, 3a,4,7,7a-tetrahydro-1, and Methyl 4-(pyrrol-1-yl)-1,2,5-oxadiazole-3-carboxylate1, which is the polar part indicated by the presence of dicarboxylic acid and carboxylate groups; while the non-polar portion can be interpreted as a hydrocarbon chain of variable length. Based on the present results, BS can be an alternative for the biocontrol of the root-knot nematode N. aberrans and the mite T. putrescentiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manzanilla LRH, Costilla MA, Doucet M, Inserra RN, Lehman PS, Cid del PV, Souza RM, Evans K (2002) The genus Nacobbus Thorne & Allen, 1944 (Nematoda: Pratylenchidae): systematics, distribution, biology and management. Nematropica 32:149–227

    Google Scholar 

  2. Méndez SEW, Sánchez CR, Folch MJL, Aguilar ML, Hernández VVM, Gómez RO, Villar LE, Wong VA (2020) Serratia sp., an endophyte of Mimosa pudica nodules with nematicidal, antifungal activity and growth promoting characteristics. Arch Microbiol https://doi.org/10.1007/s00203-020-02051-2

  3. Hughes AM (1976) The mites of stored food and houses her majesty’s stationery office, London, UK

  4. Colloff MJ (2009) Dust mite allergens. In Dust mites, Springer, Dordrecht, p 2009

    Book  Google Scholar 

  5. Duek L, Kaufman G, Palevsky E, Berdicevsky I (2001) Mites in fungal cultures. Mycoses 44(9-10):390–394. https://doi.org/10.1046/j.1439-0507.2001.00684.x

    Article  CAS  PubMed  Google Scholar 

  6. Erban T, Klimov PB, Smrz J, Phillips TW, Nesvorna M, Kopecky J, Hubert J (2016) Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Front Microbiol 12(7):1046. https://doi.org/10.3389/fmicb.2016.01046

    Article  Google Scholar 

  7. Erban T, Ledvinka O, Nesvorna M, Hubert J (2017) Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae. Appl Environ Microbiol 83(9):e00128–e00117. https://doi.org/10.1128/AEM.00128-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Andrade TFN, de Souza AC, Simões LA, Ferreira Dos RGM, Souza KT, Schwan RF, Dias DR (2020) Eco-friendly biosurfactant from Wickerhamomyces anomalus CCMA 0358 as larvicidal and antimicrobial. Microbiol Res 241:126571. https://doi.org/10.1016/j.micres.2020.126571

    Article  CAS  Google Scholar 

  9. Al-Assiuty BA, Nenaah GE, Ageba ME (2019) Chemical profile, characterization and acaricidal activity of essential oils of three plant species and their nanoemulsions against Tyrophagus putrescentiae, a stored food mite. Exp Appl Acarol 79(3-4):359–376. https://doi.org/10.1007/s10493-019-00432-x

    Article  CAS  PubMed  Google Scholar 

  10. Kaya D, Inceboz T, Kolatan E, Güneli E, Yilmaz O (2010) Comparison of efficacy of ivermectin and doramectin against mange mite (Sarcoptes scabiei) in naturally infested rabbits in Turkey. Vet Ital 46(1):51–56

    PubMed  Google Scholar 

  11. Tak JH, Kim HK, Lee SH, Ahn YJ (2006) Acaricidal activities of paeonol and benzoic acid from Paeonia suffruticosa root bark and monoterpenoids against Tyrophagus putrescentiae (Acari: Acaridae). Pest Manag Sci 62(6):551–557. https://doi.org/10.1002/ps.1212

    Article  CAS  PubMed  Google Scholar 

  12. Marcelino PRF, Gonçalves F, Jimenez IM, Carneiro BC, Santos BB, da Silva SS (2020) Sustainable production of biosurfactants and their applications. In: Ingle AP, Chandel AK, da Silva SS (eds) Lignocellulosic Biorefining Technologies. John Wiley & Sons Ltd, Pondicherry, India, pp 159–184

    Chapter  Google Scholar 

  13. Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397. https://doi.org/10.1016/j.biortech.2017.02.047

    Article  CAS  PubMed  Google Scholar 

  14. Kubicki S, Bollinger A, Katzke N, Jaeger KE, Loeschcke A, Thies S (2019) Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar Drugs 17:1–30. https://doi.org/10.3390/md17070408

    Article  CAS  Google Scholar 

  15. Varjani SJ, Upasani VN (2019) Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa. Bioresour Technol 288:121577. https://doi.org/10.1016/j.biortech.2019.121577

    Article  CAS  PubMed  Google Scholar 

  16. Markandev AR, Patel D, Varjani S (2021) A review on biosurfactants: properties, applications and current developments. Bioresour Technol 330:124963. https://doi.org/10.1016/j.biortech.2021.124963

    Article  CAS  Google Scholar 

  17. D’aes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372

    Article  PubMed  Google Scholar 

  18. Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Patel M (2021) Functional and structural characterization of Pediococcus pentosaceus derived biosurfactant and its biomedical potential against bacterial adhesion, quorum sensing, and biofilm formation. Antibiot 10(11):1371

    Article  CAS  Google Scholar 

  19. Patel M, Siddiqui AJ, Hamadou WS, Surti M, Awadelkareem AM, Ashraf SA, Adnan M (2021) Inhibition of bacterial adhesion and antibiofilm activities of a glycolipid biosurfactant from Lactobacillus rhamnosus with its physicochemical and functional properties. Antibiot 10(12):1546

    Article  CAS  Google Scholar 

  20. Fazaeli N, Bahador N, Hesami S (2021) A study on larvicidal activity and phylogenetic analysis of Staphylococcus epidermidis as a biosurfactant-producing bacterium. Pol J Environ Stud 30(5):4511–4519. https://doi.org/10.15244/pjoes/132807

    Article  CAS  Google Scholar 

  21. Franco MPR, da Silva VL, Rodrigues PR, Von Zuben CJ, Contiero J, dos Santos JC (2017) Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS One 12(11):e0187125. https://doi.org/10.1371/journal.pone.0187125

    Article  CAS  Google Scholar 

  22. Hussain T, Haris M, Shakeel A (2020) Bio-nematicidal activities by culture filtrate of Bacillus subtilis HussainT-AMU: new promising biosurfactant bioagent for the management of Root Galling caused by Meloidogyne incognita. Vegetos 33:229–238. https://doi.org/10.1007/s42535-020-00099-5

    Article  Google Scholar 

  23. Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59(3):934–938. https://doi.org/10.1021/jf104027x

    Article  CAS  PubMed  Google Scholar 

  24. Vrain TC (1997) A technique for the collection of larvae of Meloidogyne spp. and a comparison of eggs and larvae as inoculate. J Nematol 9:249–251. https://doi.org/10.1016/j.jip.2006.03.006

    Article  Google Scholar 

  25. Villar LE, Reyes TB, Rojas MR, Gómez RO, Hernández AA, Zavaleta ME (2009) Respuesta hipersensitiva en el follaje de chile CM.334 resistente a Phytophthora capsici infectado con Nacobbus aberrans. Nematropica 39:143–155

    Google Scholar 

  26. Aguilar ML, Quintero MMT, De Gives PM, López AME, Liébano HE, Torres HG, Del Prado IC (2014) Evaluation of predation of the mite Lasioseius penicilliger (Aracnida: Mesostigmata) on Haemonchus contortus and bacteria feeding nematodes. J Helminthol 88(1):20–23

    Article  Google Scholar 

  27. De Lara R, Castro T, Castro J, Castro G (2007) Nematode culture of Panagrellus redivivus (Goodey, 1945) with Spirulina sp., enriched oatmeal. Rev Biol Mar Oceanogr 42:29–36

    Google Scholar 

  28. Weisburg GW, Barns MS, Pelletier AD, Lane JD (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. https://doi.org/10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  30. Santos DK, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Pet Sci Eng 105:43–50

    Article  CAS  Google Scholar 

  31. Silva EJ, NMPR ES, Rufino RD, Luna JM, Silva RO, Sarubbo LA (2014) Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids and Surf. B: Biointerfaces 117:36–41

    Article  CAS  PubMed  Google Scholar 

  32. Hahn MH, De Mio LLM, Kuhn OJ, Duarte HDSS (2019) Nematophagous mushrooms can be an alternative to control Meloidogyne javanica. Biol Control 138:104024

    Article  Google Scholar 

  33. Pineda AJA, Sánchez VJE, Gonzalez CM, Zamilpa A, López AME, Cuevas PEJ, Aguilar ML (2017) The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J Med Food 20(12):1184–1192

    Article  Google Scholar 

  34. R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 27 May 2022

    Google Scholar 

  35. Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeter Biodegr 81:28–34

    Article  CAS  Google Scholar 

  36. Ismail W, Al-Rowaihi IS, Al-Humam AA, Hamza RY, El Nayal AM (2013) Bououdina, M. Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int Biodeter Biodegr 84:168–178

    Article  CAS  Google Scholar 

  37. Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46(2):149–156

    Article  CAS  PubMed  Google Scholar 

  38. Janek T, Łukaszewicz M, Krasowska A (2013) Identification and characterization of biosurfactants produced by the arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerfaces 110:379–386

    Article  CAS  PubMed  Google Scholar 

  39. Tuleva B, Christova N, Jordanov B, Nikolova-Damyanova B, Petrov P (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch C J Biosci 60(7-8):577–582. https://doi.org/10.1515/znc-2005-7-811

    Article  CAS  PubMed  Google Scholar 

  40. Durval IJB, Mendonça AHR, Rocha IV, Luna JM, Rufino RD Converti A, Sarubbo LA (2020) Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Mar Pollut Bull 157:111357. https://doi.org/10.1016/j.marpolbul.2020.111357.

  41. Bhawsar SD, Path SD, Chopade BA (2011) Antimicrobial activity of purified emulsifier of acinetobacter purified genospecies isolated from rhizosphere of wheat. Agric Sci Dig 31:239–246

    CAS  Google Scholar 

  42. Naughton PJ, Marchant R, Naughton V, Banat IM (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127:12–28. https://doi.org/10.1111/jam.14243

    Article  CAS  PubMed  Google Scholar 

  43. Shaikh S, Yadav N, Markande AR (2020) Interactive potential of Pseudomonas species with plants. J Appl Biol Biotechnol 8:101–111. https://doi.org/10.7324/jabb.2020.80616

    Article  CAS  Google Scholar 

  44. Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H (2021) Microbial biosurfactant: a new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants 10:1472. https://doi.org/10.3390/antiox10091472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geetha I, Manonmani AM (2010) Surfactin: a novel mosquitocidal biosurfactant produced by Bacillus subtilis ssp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Lett Appl Microbiol 4:406–412. https://doi.org/10.1111/j.1472-765X.2010.02912.x

    Article  CAS  Google Scholar 

  46. Curtis D Thompson B (2016) Compositions comprising recombinant Bacillus cells and another biological control agent. International application published under the patent cooperation treaty (PCT) WO2016044529-A1.

  47. Płaza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P (2015) Detection of biosurfactants in Bacillus species: genes and products identification. J Appl Microbiol 119(4):1023–1034. https://doi.org/10.1111/jam.12893

    Article  CAS  PubMed  Google Scholar 

  48. Nawazish A, Zhengjun P, Fenghuan W, Baocai X, Hesham R, El-S (2022) Lipopeptide biosurfactants from Bacillus spp.: types, production, biological activities, and applications in food. J Food Qual. https://doi.org/10.1155/2022/3930112

Download references

Acknowledgements

The authors thank M.C. Susan Yaracet Páez-León and IBT. Angelita Morales-Morales for assisting with the research. This study was partially financed by the Fiscal Resources Project of INIFAP with the number: 139335341.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arnoldo Wong-Villarreal or Liliana Aguilar-Marcelino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Enderson Ferreira

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gutiérrez, J.A., Wong-Villarreal, A., Aguilar-Marcelino, L. et al. In vitro nematicidal and acaricidal effect of biosurfactants produced by Bacillus against the root-knot nematode Nacobbus aberrans and the dust mite Tyrophagus putrescentiae. Braz J Microbiol 54, 1127–1136 (2023). https://doi.org/10.1007/s42770-023-00981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00981-9

Keywords

Navigation