Skip to main content

Advertisement

Log in

New methylene blue-mediated photodynamic inactivation of multidrug-resistant Fonsecaea nubica infected chromoblastomycosis in vitro

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chromoblastomycosis is a fungal disease presented with local warty papule, plaque, and verrucous nodules. In addition, the incidence and drug resistance of chromoblastomycosis are increasing each year worldwide. Photodynamic therapy is a promising method to treat mycoses. The purpose of this study was to evaluate the effect of new methylene blue (NMB)-induced PDT on multidrug-resistant chromoblastomycosis in vitro. We isolated one wild-type strain pathogen from one clinical patient diagnosed with chromoblastomycosis for over 27 years. The pathogen was identified by histopathology, the morphology of fungal culture, and genetic testing. Drug susceptibility testing was performed on the isolate. It was cultured with logarithmic growth phase spore in vitro and incubated with different concentrations of NMB for 30 min, and received illumination by red light-emitted diode with different light doses. After photodynamic treatment, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted. The pathogen was Fonsecaea nubica, and it was resistant to itraconazole, terbinafine, amphotericin B, voriconazole andcaspofungin. At the same NMB concentration, the sterilization efficiency of NMB-photodynamic therapy (PDT) on F. nubica increased with increasing light intensity; F. nubica was completely killed at 25 µmol/L NMB with a light dose of 40 J/cm2 or 50 µmol/L NMB and light doses of ≥ 30 J/cm2. SEM and TEM observed ultrastructural changes after PDT. NMB-PDT inactivates the survival of multidrug-resistant F. nubica in vitro; it therefore has the potential to become an alternative or adjuvant treatment for refractory chromoblastomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated in this study can be found in online repositories. The accession number(s) and the names of the repositories can be found below: MW269556, https://www.ncbi.nlm.nih.gov/nuccore/MW269556.

References

  1. Queiroz-Telles F, de Hoog S, Santos D, Salgado C, Vicente V, Bonifaz A, Roilides E, Xi L, Azevedo C, da Silva M, Pana Z, Colombo A, Walsh T (2017) Chromoblastomycosis. Clin Microbiol Rev 30:233–276. https://doi.org/10.1128/CMR.00032-16

    Article  CAS  PubMed  Google Scholar 

  2. Schneider G, Gomes R, Bombassaro A, Zamarchi K, Voidaleski M, Costa F, Leão A, Lima B, Soley B, Colombo I, Cândido G, Najafzadeh M, Sun J, de Azevedo C, Marques S, de Hoog G (2019) New Molecular Markers Distinguishing Fonsecaea Agents of Chromoblastomycosis. Mycopathologia 184:493–504. https://doi.org/10.1007/s11046-019-00359-2

    Article  PubMed  Google Scholar 

  3. Vinod Mootha V, Shahinpoor P, Sutton D, Xin L, Najafzadeh M, de Hoog G (2012) Identification problems with sterile fungi, illustrated by a keratitis due to a non-sporulating Chaetomium-like species. Med Mycol 50:361–367. https://doi.org/10.3109/13693786.2011.611179

    Article  CAS  PubMed  Google Scholar 

  4. Costa F, de Hoog S, Raittz R, Weiss V, Leão A, Bombassaro A, Sun J, Moreno L, Souza E, Pedrosa F, Steffens M, Baura V, Tadra-Sfeir M, Balsanelli E, Najafzadeh M, Gomes R, Felipe M, Teixeira M, Santos G, Xi L (2016) M Alves de Castro, V.J.G.a. Vicente, Draft Genome Sequence of Fonsecaea nubica Strain CBS 269.64, Causative Agent of Human Chromoblastomycosis. Genome Announc 4. https://doi.org/10.1128/genomeA.00735-16

  5. Chen Y, Yin S, Li M, Chen R, Wei L, Ma H, Deng S, de Hoog G, Lai W, Lu C, Feng PJM (2016) A case of chromoblastomycosis by Fonsecaea nubica indicating a possible insect route of transmission. Mycoses 59:662–667. https://doi.org/10.1111/myc.12523

    Article  PubMed  Google Scholar 

  6. He L, Ma J, Mei X, Lu S, Li X, Xi LJM (2018) Successful treatment of chromoblastomycosis of 10-year duration due to Fonsecaea nubica. Mycoses 61:231–236. https://doi.org/10.1111/myc.12732

    Article  CAS  PubMed  Google Scholar 

  7. Luo J, Feng P, Hu Y, Yang Y, Zhou S, Huang S, Jadad A, Zhong Z, Zheng Y, Liu K, Lu Y, Hu YQ, Zhou X (2019) Fonsecaea nubica[Long-pulsed 1064 nm Nd: YAG laser combined with terbinafine against chromoblastomycosis caused by and the effect of laser therapy in a Wistar rat model]. Nan Fang Yi Ke Da Xue Xue Bao 39:712–717. https://doi.org/10.12122/j.issn.1673-4254.2019.06.13

    Article  CAS  PubMed  Google Scholar 

  8. You Z, Yang X, Yu J, Zhang J, Ran YJM (2019) Chromoblastomycosis Caused by Fonsecaea nubica: First Report in Northern China and Literature Review. Mycopathologia 184:97–105. https://doi.org/10.1007/s11046-018-0307-0

    Article  PubMed  Google Scholar 

  9. Zhang J, Wu X, Li M, Huang J, Yin S, Huang H, Lu C, Xi L (2019) Synergistic effect of terbinafine and amphotericin B in killing Fonsecaea nubica in vitro and in vivo. Rev Inst Med Trop Sao Paulo 19:e31. https://doi.org/10.1590/S1678-9946201961031

    Article  Google Scholar 

  10. Yanagihara S, Kobayashi H, Kamo R, Hirata C, Hiruma M, Nishimura K, Yaguchi T, Yoshida Y, Yamamoto O, Tsuruta D (2015) Chromoblastomycosis caused by Fonsecaea nubica: First report from Japan. J Dermatol 42:833–834. https://doi.org/10.1111/1346-8138.12898

    Article  PubMed  Google Scholar 

  11. Cateau E, Cante V, Garcia Hermoso D, Rodier MH (2014) Fonsecaea nubica Case of chromoblastomycosis from the French territory of Mayotte. JMM Case Rep 1:e004218. https://doi.org/10.1099/jmmcr.0.004218

    Article  PubMed  PubMed Central  Google Scholar 

  12. Slesak G, Inthalad S, Strobel M, Marschal M, Hall M, Newton PN (2011) Chromoblastomycosis after a leech bite complicated by myiasis: a case report. BMC Infect Dis 11:14. https://doi.org/10.1186/1471-2334-11-14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sophie B, Coralie Z, Mai Ba H, Annie L, Dea G, Liliane L, Arezki I (2015) First case of chromoblastomycosis from Bangladesh. Med Mycol Case Rep 10:1–3. https://doi.org/10.1016/j.mmcr.2015.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andrade T, Castro L, Nunes R, Gimenes V, Cury AE (2004) Susceptibility of sequential Fonsecaea pedrosoi isolates from chromoblastomycosis patients to antifungal agents. Mycoses 47:216–221. https://doi.org/10.1111/j.1439-0507.2004.00984.x

    Article  CAS  PubMed  Google Scholar 

  15. Lyon J, Pedroso e Silva Azevedo CM, Moreira L, de Lima C, de Resende MJM (2011) Photodynamic antifungal therapy against chromoblastomycosis. Mycopathologia 172:293-297. https://doi.org/10.1007/s11046-011-9434-6

  16. Gupta A, Cooper E (2008) Update in antifungal therapy of dermatophytosis. Mycopathologia 166:353–367. https://doi.org/10.1007/s11046-008-9109-0

    Article  PubMed  Google Scholar 

  17. Queiroz-Telles F, Nucci M, Colombo A, Tobón A, Restrepo A (2011) Mycoses of implantation in Latin America: an overview of epidemiology, clinical manifestations, diagnosis and treatment. Med Mycol 49:225–236. https://doi.org/10.3109/13693786.2010.539631

    Article  PubMed  Google Scholar 

  18. Yin R, Hamblin MR (2015) Antimicrobial Photosensitizers: Drug Discovery Under the Spotlight. Curr Med Chem 22:2159–2185. https://doi.org/10.2174/0929867322666150319120134

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Hu Y, Zhang J, Li X, Lu C, Liang Y, Xi L (2012) A refractory case of chromoblastomycosis due to Fonsecaea monophora with improvement by photodynamic therapy. Med Mycol 50:649–653. https://doi.org/10.3109/13693786.2012.655258

    Article  CAS  PubMed  Google Scholar 

  20. Hu Y, Huang X, Lu S, Hamblin M, Mylonakis E, Zhang J, Xi L (2015) Photodynamic therapy combined with terbinafine against chromoblastomycosis and the effect of PDT on Fonsecaea monophora in vitro. Mycopathologia 179:103–109. https://doi.org/10.1007/s11046-014-9828-3

    Article  CAS  PubMed  Google Scholar 

  21. Dai T, de Bil Arce V, Tegos G, Hamblin MR (2011) Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 55:5710–5717. https://doi.org/10.1128/AAC.05404-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fransisca C, He Y, Chen Z, Liu H, Xi L (2017) Molecular identification of chromoblastomycosis clinical isolates in Guangdong. Med Mycol 55:851–858. https://doi.org/10.1093/mmy/myw140

    Article  PubMed  Google Scholar 

  23. Najafzadeh M, Gueidan C, Badali H, Van Den Ende A, Xi L, Hoog G (2009) Genetic diversity and species delimitation in the opportunistic genus Fonsecaea. Med Mycol 47:17–25. https://doi.org/10.1080/13693780802527178

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Rossi N, Peres N, Rossi A (2008) Antifungal resistance mechanisms in dermatophytes. Mycopathologia 166:369–383. https://doi.org/10.1007/s11046-008-9110-7

    Article  PubMed  Google Scholar 

  25. Ragàs X, Dai T, Tegos G, Agut M, Nonell S, Hamblin MR (2010) Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies. Lasers Surg Med 42:384–390. https://doi.org/10.1002/lsm.20922

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rodrigues G, Dias-Baruffi M, Holman N, Wainwright M, Braga GUL (2013) In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis Photodyn Ther 10:141–149. https://doi.org/10.1016/j.pdpdt.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Giroldo L, Felipe M, de Oliveira M, Munin E, Alves L, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–112. https://doi.org/10.1007/s10103-007-0530-2

    Article  PubMed  Google Scholar 

  28. Calzavara-Pinton P, Rossi M, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy. Photochem Photobiol 88:512–522. https://doi.org/10.1111/j.1751-1097.2012.01107.x

    Article  CAS  PubMed  Google Scholar 

  29. Zhou S, Sun Z, Ye Z, Wang Y, Wang L, Xing L, Qiu H, Huang N, Luo Y, Zhao Y, Gu YJP (2018) In vitro photodynamic inactivation effects of benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans. Photodiagnosis Photodyn Ther 22:178–186. https://doi.org/10.1016/j.pdpdt.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  30. Yi X, Fransisca C, He Y, Liu Y, Lu S, He L, Xi L (2017) Photodynamic effects on Fonsecaea monophora conidia and RAW264.7 in vitro. J Photochem Photobiol B 176:112–117. https://doi.org/10.1016/j.jphotobiol.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  31. Schiavone M, Formosa-Dague C, Elsztein C, Teste M, Martin-Yken H, De Morais M, Dague E, François JM (2016) Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress. Appl Environ Microbiol 82:4789–4801. https://doi.org/10.1128/AEM.01213-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donnelly R, McCarron P, Tunney M, Woolfson AD (2007) Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. Photochem Photobiol B 86:59–69. https://doi.org/10.1016/j.jphotobiol.2006.07.011

    Article  CAS  Google Scholar 

  33. Ricchelli FJ (1995) Photophysical properties of porphyrins in biological membranes. J Photochem Photobiol B 29:109–118. https://doi.org/10.1016/1011-1344(95)07155-u

    Article  CAS  PubMed  Google Scholar 

  34. Healey K, Kordalewska M, Jiménez Ortigosa C, Singh A, Berrío I, Chowdhary A, Perlin DS (2018) ERG11Limited Mutations Identified in Isolates of Candida auris Directly Contribute to Reduced Azole Susceptibility. Antimicrob Agents Chemother 62:e01427-e1518. https://doi.org/10.1128/AAC.01427-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan X, Xiao M, Zhang D, Huang J, Wang H, Hou X, Zhang L, Kong F, Chen S, Tong Z, Xu Y (2019) Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect 25:885–891. https://doi.org/10.1016/j.cmi.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Arastehfar A, Daneshnia F, Hilmioğlu-Polat S, Fang W, Yaşar M, Polat F, Metin D, Rigole P, Coenye T, Ilkit M, Pan W, Liao W, Hagen F, Kostrzewa M, Perlin D, Lass-Flörl C, Boekhout T (2020) First Report of Candidemia Clonal Outbreak Caused by Emerging Fluconazole-Resistant Candida parapsilosis Isolates Harboring Y132F and/or Y132F+K143R in Turkey. Antimicrob Agents Chemother 64:e01001-e1020. https://doi.org/10.1128/AAC.01001-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishimoto A, Sharma C, Rogers PD (2020) Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 75:257–270. https://doi.org/10.1093/jac/dkz400

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received the research grant from National Natural Science Foundation of China (81571902 and 82172203).

Author information

Authors and Affiliations

Authors

Contributions

Rui Yin conceived the ideas and guided the whole research work. Mengxue Zheng and Xiaoqing Zhou did the experiment in vitro and analyzed the data. Jiaying Pang and Zengjun Yang assisted the writing and analyzed the data. Yongzhen Zou, Lian Zhang and Yan Xu collected the clinical data and cultured fungi. All authors declared that they were responsible for the content of manuscript.

Corresponding author

Correspondence to Rui Yin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Carlos Pelleschi Taborda

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Zhou, X., Pang, J. et al. New methylene blue-mediated photodynamic inactivation of multidrug-resistant Fonsecaea nubica infected chromoblastomycosis in vitro. Braz J Microbiol 54, 873–883 (2023). https://doi.org/10.1007/s42770-023-00974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00974-8

Keywords

Navigation