Skip to main content

Advertisement

Log in

SVR-flaA typing of erythromycin- and ciprofloxacin-resistant Campylobacter jejuni strains isolated from poultry slaughterhouses in southern Brazil

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 28 April 2023

This article has been updated

Abstract

The emergence of fluoroquinolone and macrolide resistance in C. jejuni, a recognized zoonotic pathogen, has increased worldwide. This study aimed to investigate phenotypic resistance to ciprofloxacin and erythromycin, the molecular mechanisms involved, and the strain of C. jejuni isolated from broiler carcasses. Eighty C. jejuni isolates from broiler carcasses in southern Brazil were investigated for their susceptibility to ciprofloxacin and erythromycin at minimal inhibitory concentrations. Mismatch amplification mutation assay–polymerase chain reaction (MAMA-PCR) was performed to detect substitutions of Thr-86-Ile, A2074C, and A2075G of domain V in the 23S rRNA. The presence of ermB gene and CmeABC operon were investigated by PCR. DNA sequencing was used to detect substitutions in the L4 and L22 proteins of the erythromycin-resistant strains. The Short Variable Region (SVR) of flaA was used to type all the strains resistant to both antimicrobials. Ciprofloxacin and erythromycin resistance were detected in 81.25% and 30.00% of the strains, respectively, and minimal inhibitory concentration values ranged from ≤ 0.125 to 64 µg/mL for ciprofloxacin and 0.5 to > 128 µg/mL for erythromycin. The Thr-86-Ile mutation in gyrA was observed in 100% of the ciprofloxacin-resistant strains. Mutations in both the A2074C and A2075G positions of 23S rRNA were observed in 62.5% of the erythromycin-resistant strains, while 37.5% had only the mutation A2075G. None of the strains harbored CmeABC operon, and ermB was not detected. Using DNA sequencing, the amino acid substitution T177S was detected in L4, and substitutions I65V, A103V, and S109A were detected in L22. Twelve flaA-SVR alleles were identified among the strains, with the most common SVR-flaA allele, type 287, covering 31.03% of ciprofloxacin- and erythromycin-resistant isolates. The present study revealed a high incidence and high levels of resistance to ciprofloxacin and erythromycin, as well as broad molecular diversity in C. jejuni isolates from broiler carcasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. European Food Safety Authority (EFSA) (2021) The European Union One Health 2020 Zoonoses Report. EFSA J 19:. https://doi.org/10.2903/j.efsa.2021.6971

  2. CDC (2019) Surveillance for foodborne disease outbreaks United States, 2017: annual report

  3. EFSA & ECDC (2021) The European Union One Health 2019 Zoonoses Report. EFSA Journal Eur Food Saf Auth 19:e06406. https://doi.org/10.2903/j.efsa.2021.6406

  4. Rosner BM, Schielke A, Didelot X et al (2017) A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011–2014 /692/308/174 /692/499 article. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-05227-x

    Article  CAS  Google Scholar 

  5. Elhadidy M, Ali MM, El-Shibiny A et al (2020) Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases. PLoS One 15:1–16. https://doi.org/10.1371/journal.pone.0227833

    Article  CAS  Google Scholar 

  6. Bartz FW, Teixeira LB, Schroder R et al (2022) First fatal cases due to Escherichia coli O157 and Campylobacter jejuni subsp. jejuni outbreak occurred in southern Brazil. Foodborne Pathog Dis 19:241–247. https://doi.org/10.1089/fpd.2021.0075

    Article  CAS  Google Scholar 

  7. Reina J, Borrell N, Serra A (1992) Emergence of resistance to erythromycin and fluoroquinolones in thermotolerant Campylobacter strains isolated from feces 1987–1991. Eur J Clin Microbiol Infect Dis 11:1163–1166. https://doi.org/10.1007/BF01961137

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez R, Fernandez-Baca V, Diaz MD et al (1994) Evolution of susceptibilities of Campylobacter spp. to quinolones and macrolides. Antimicrob Agents Chemother 38:1879–1882. https://doi.org/10.1128/AAC.38.9.1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cody AJ, Clarke L, Bowler IC, Dingle KE (2010) Ciprofloxacin-resistant campylobacteriosis in the UK. Lancet 376:1987. https://doi.org/10.1016/S0140-6736(10)62261-1

    Article  PubMed  Google Scholar 

  10. Endtz HP, Ruijs GJ, van Klingeren B et al (1991) Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 27:199–208. https://doi.org/10.1093/jac/27.2.199

    Article  CAS  PubMed  Google Scholar 

  11. World Health Organization (WHO) (2018) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics

  12. CDC (2019) Antibiotic resistance threats in the United States, 2019. Atlanta, Georgia

  13. Wang Y, Zhang M, Deng F et al (2014) Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 58:5405–5412. https://doi.org/10.1128/AAC.03039-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corcoran D, Quinn T, Cotter L, Fanning S (2006) An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int J Antimicrob Agents 27:40–45. https://doi.org/10.1016/j.ijantimicag.2005.08.019

    Article  CAS  PubMed  Google Scholar 

  15. Aquino MHC, Filgueiras ALL, Matos R et al (2010) Diversity of Campylobacter jejuni and Campylobacter coli genotypes from human and animal sources from Rio de Janeiro, Brazil. Res Vet Sci 88:214–217. https://doi.org/10.1016/j.rvsc.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  16. Elhadidy M, Arguello H, Álvarez-Ordóñez A et al (2018) Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. Int J Food Microbiol 275:66–75. https://doi.org/10.1016/j.ijfoodmicro.2018.04.004

    Article  PubMed  Google Scholar 

  17. Rapp D, Ross C, Hea SY, Brightwell G (2020) Importance of the farm environment and wildlife for transmission of campylobacter jejuni in a pasture-based dairy herd. Microorganisms 8:1–11. https://doi.org/10.3390/microorganisms8121877

    Article  CAS  Google Scholar 

  18. Frazão MR, de Souza RA, Medeiros MIC et al (2020) Molecular typing of Campylobacter jejuni strains: comparison among four different techniques. Brazilian J Microbiol 51:519–525. https://doi.org/10.1007/s42770-019-00218-8

    Article  CAS  Google Scholar 

  19. Clark CG, Taboada E, Grant CCR et al (2012) Comparison of molecular typing methods useful for detecting clusters of Campylobacter jejuni and C. coli isolates through routine surveillance. J Clin Microbiol 50:798–809. https://doi.org/10.1128/JCM.05733-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Adawy H, Hotzel H, Tomaso H et al (2013) Detection of genetic diversity in Campylobacter jejuni isolated from a commercial Turkey flock using flaA typing, MLST analysis and microarray assay. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0051582

    Article  CAS  Google Scholar 

  21. Rodrigues CS, Armendaris PM, de Sá CVGC et al (2021) Prevalence of Campylobacter spp. in chicken carcasses in slaughterhouses from South of Brazil. Curr Microbiol 78:2242–2250. https://doi.org/10.1007/s00284-021-02478-w

    Article  CAS  PubMed  Google Scholar 

  22. Clinical and Laboratory Standards Institute (CLSI) (2015) M45. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria

  23. Zirnstein G, Li Y, Swaminathan B, Angulo F (1999) Ciprofloxacin resistance in Campylobacter jejuni isolates: detection of gyrA resistance mutations by mismatch amplification mutation assay PCR and DNA sequence analysis. J Clin Microbiol 37:3276–3280. https://doi.org/10.1128/jcm.37.10.3276-3280.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alonso R, Mateo E, Churruca E et al (2005) MAMA-PCR assay for the detection of point mutations associated with high-level erythromycin resistance in Campylobacter jejuni and Campylobacter coli strains. J Microbiol Methods 63:99–103. https://doi.org/10.1016/j.mimet.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  25. Lin J, Overbye Michel L, Zhang Q (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46:2124–2131. https://doi.org/10.1128/AAC.46.7.2124-2131.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meinersmann RJ, Helsel LO, Fields PI, Hiett KL (1997) Discrimination of Campylobacter jejuni isolates by fla gene sequencing. J Clin Microbiol 35:2810–2814. https://doi.org/10.1128/jcm.35.11.2810-2814.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  28. Jolley KA, Bray JE, Maiden MCJ (2018) Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. https://doi.org/10.12688/wellcomeopenres.14826.1

  29. Panzenhagen PHN, Aguiar WS, da Silva FB et al (2016) Prevalence and fluoroquinolones resistance of Campylobacter and Salmonella isolates from poultry carcasses in Rio de Janeiro, Brazil. Food Control 61:243–247. https://doi.org/10.1016/j.foodcont.2015.10.002

    Article  CAS  Google Scholar 

  30. Frasão BS, Côrtes LR, Nascimento ER et al (2015) Detecção de resistência às fluoroquinolonas em Campylobacter isolados de frangos de criação orgânica. Pesqui Vet Bras 35:613–619. https://doi.org/10.1590/s0100-736x2015000700003

    Article  Google Scholar 

  31. da Silva Frasao B, Medeiros V, Barbosa AV et al (2015) Detection of fluoroquinolone resistance by mutation in gyrA gene of Campylobacter spp. isolates from broiler and laying (Gallus gallus domesticus) hens, from Rio de Janeiro State. Brazil Cienc Rural 45:2013–2018. https://doi.org/10.1590/0103-8478cr20141712

    Article  CAS  Google Scholar 

  32. Han J, Wang Y, Sahin O et al (2012) A fluoroquinolone resistance associated mutation in gyrA affects DNA supercoiling in Campylobacter jejuni. Front Cell Infect Microbiol 2:21. https://doi.org/10.3389/fcimb.2012.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo N, Pereira S, Sahin O et al (2005) Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci 102:541–546. https://doi.org/10.1073/pnas.0408966102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dias TS, Nascimento RJ, Machado LS et al (2021) Comparison of antimicrobial resistance in thermophilic Campylobacter strains isolated from conventional production and backyard poultry flocks. Br Poult Sci 62:188–192. https://doi.org/10.1080/00071668.2020.1833302

    Article  CAS  PubMed  Google Scholar 

  35. Melo RT, Grazziotin AL, Júnior ECV et al (2019) Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiol 82:489–496. https://doi.org/10.1016/j.fm.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  36. Dias TS, Machado LS, Vignoli JA et al (2020) Phenotypic and molecular characterization of erythromycin resistance in Campylobacter jejuni and Campylobacter coli strains isolated from swine and broiler chickens. Pesqui Vet Bras 40:598–603. https://doi.org/10.1590/1678-5150-PVB-6466

    Article  Google Scholar 

  37. Hungaro HM, Mendonça RCS, Rosa VO et al (2015) Low contamination of Campylobacter spp. on chicken carcasses in Minas Gerais state, Brazil: molecular characterization and antimicrobial resistance. Food Control 51:15–22. https://doi.org/10.1016/j.foodcont.2014.11.001

    Article  CAS  Google Scholar 

  38. Paravisi M, Laviniki V, Bassani J, et al (2020) Antimicrobial resistance in Campylobacter jejuni Isolated from Brazilian poultry slaughterhouses. Brazilian J Poult Sci 22:. https://doi.org/10.1590/1806-9061-2020-1262

  39. Bolinger H, Kathariou S (2017) The current state of macrolide resistance in Campylobacter spp.: trends and impacts of resistance mechanisms. Appl Environ Microbiol 83:. https://doi.org/10.1128/AEM.00416-17

  40. Florez-Cuadrado D, Ugarte-Ruiz M, Quesada A et al (2016) Description of an erm(B)-carrying Campylobacter coli isolate in Europe. J Antimicrob Chemother 71:841–843. https://doi.org/10.1093/jac/dkv383

    Article  CAS  PubMed  Google Scholar 

  41. Jehanne Q, Bénéjat L, Ducournau A et al (2021) Emergence of erythromycin resistance methyltransferases in Campylobacter coli strains in France. Antimicrob Agents Chemother 64:810. https://doi.org/10.1128/AAC.01124-21

    Article  Google Scholar 

  42. Ramatla T, Mileng K, Ndou R et al (2022) Campylobacter jejuni from slaughter age broiler chickens : genetic characterization, virulence, and antimicrobial resistance genes. 2022:

  43. Wallace RL, Bulach D, Valcanis M et al (2020) Identification of the first erm(B)-positive Campylobacter jejuni and Campylobacter coli associated with novel multidrug resistance genomic islands in Australia. J Glob Antimicrob Resist 23:311–314. https://doi.org/10.1016/j.jgar.2020.09.009

    Article  PubMed  Google Scholar 

  44. Anampa D, Benites C, Lázaro C et al (2020) Detección del gen ermB asociado a la resistencia a macrólidos en cepas de Campylobacter aisladas de pollos comercializados en Lima , Perú. Pan Am J Public Heal 1–7

  45. Rauber N, Ramires T, F S De et al (2021) Antimicrobial resistance genes and plasmids in Campylobacter jejuni from broiler production chain in Southern Brazil. 144:. https://doi.org/10.1016/j.lwt.2021.111202

  46. Gomes CN, Fraza MR, Passaglia J et al (2019) Molecular epidemiology and resistance profile of Campylobacter jejuni and Campylobacter coli strains isolated from different sources in Brazil. 00: https://doi.org/10.1089/mdr.2019.0266

  47. García-Sánchez L, Melero B, Jaime I et al (2019) Biofilm formation, virulence and antimicrobial resistance of different Campylobacter jejuni isolates from a poultry slaughterhouse. Food Microbiol 83:193–199. https://doi.org/10.1016/j.fm.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  48. Wei B, Kang M (2018) Molecular basis of macrolide resistance in Campylobacter strains isolated from poultry in South Korea. Biomed Res Int 2018:. https://doi.org/10.1155/2018/4526576

  49. Vieira A, Ramesh A, Seddon AM, Karlyshev AV (2017) CmeABC multidrug efflux pump promotes Campylobacter jejuni survival. Appl Environ Microbiol 83:1–13

    Article  Google Scholar 

  50. Nascimento RJ, Frasão BS, Dias TS et al (2019) Detection of efflux pump CmeABC in enrofloxacin resistant Campylobacter spp. strains isolated from broiler chickens (Gallus gallus domesticus) in the state of Rio de Janeiro. Brazil Pesqui Vet Bras 39:728–733. https://doi.org/10.1590/1678-5150-pvb-6004

    Article  Google Scholar 

  51. Rokney A, Valinsky L, Vranckx K et al (2020) WGS-based prediction and analysis of antimicrobial resistance in Campylobacter jejuni isolates from Israel. Front Cell Infect Microbiol 10:1–13. https://doi.org/10.3389/fcimb.2020.00365

    Article  CAS  Google Scholar 

  52. Lin J, Martinez A (2006) Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. J Antimicrob Chemother 58:966–972. https://doi.org/10.1093/jac/dkl374

    Article  CAS  PubMed  Google Scholar 

  53. Burnham PM, Hendrixson DR (2018) Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 16:551–565. https://doi.org/10.1038/s41579-018-0037-9

    Article  CAS  PubMed  Google Scholar 

  54. Gomes CN, Souza RA, Passaglia J et al (2016) Genotyping of Campylobacter coli strains isolated in Brazil suggests possible contamination amongst environmental, human, animal and food sources. J Med Microbiol 65:80–90. https://doi.org/10.1099/jmm.0.000201

    Article  CAS  PubMed  Google Scholar 

  55. Wieczorek K, Wolkowicz T, Osek J (2019) FlaA-SVR based genetic diversity of multiresistant campylobacter jejuni isolated from chickens and humans. Front Microbiol 10:. https://doi.org/10.3389/fmicb.2019.01176

  56. Giacomelli M, Andrighetto C, Rossi F et al (2012) Molecular characterization and genotypic antimicrobial resistance analysis of Campylobacter jejuni and Campylobacter coli isolated from broiler flocks in northern Italy. Avian Pathol 41:579–588. https://doi.org/10.1080/03079457.2012.734915

    Article  CAS  PubMed  Google Scholar 

  57. Marotta F, Garofolo G, Di Donato G et al (2015) Population diversity of Campylobacter jejuni in poultry and its dynamic of contamination in chicken meat. Biomed Res Int 2015:. https://doi.org/10.1155/2015/859845

  58. Wieczorek K, Osek J (2019) Genetic diversity of Campylobacter jejuni isolated from the poultry food chain. J Vet Res 63:35–40. https://doi.org/10.2478/jvetres-2019-0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giacomelli M, Andrighetto C, Lombardi A et al (2012) A longitudinal study on thermophilic Campylobacter spp. in commercial Turkey flocks in Northern Italy: occurrence and genetic diversity. Avian Dis 56:693–700. https://doi.org/10.1637/10141-032312-Reg.1

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (E-26/010.001349/2019 and E-26/202.348/2022), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, code 001), and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Salles Dias.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Mariana X Byndloss

The original online version of this article was revised: In Conclusion section, the text "whole-genome sequencing was performed on strains circulating in the Brazilian poultry" needs to be corrected to "whole-genome sequencing should be performed on strains circulating in the Brazilian poultry"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, T.S., de Almeida Figueira, A., Costa, G.A. et al. SVR-flaA typing of erythromycin- and ciprofloxacin-resistant Campylobacter jejuni strains isolated from poultry slaughterhouses in southern Brazil. Braz J Microbiol 54, 1065–1073 (2023). https://doi.org/10.1007/s42770-023-00969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00969-5

Keywords

Navigation