Skip to main content
Log in

Response of microbial community in the soil of halophyte after contamination with tetrabromobisphenol A

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Coastal wetlands are subjected to increasing tetrabromobisphenol A (TBBPA) pollution, whereas knowledge of TBBPA degradation in marine environments is lacking. The changes of bacterial communities in TBBPA-polluted soil covered with halophytes were investigated. TBBPA could be degraded in the halophyte-covered saline-alkali soil in a microcosm experiment. Higher TBBPA removal occurred in the soil of Kandelia obovata compared with soils covered with Suaeda australis and Phragmites australis within 56 days of cultivation. The rhizosphere soils of S. australis, P. australis, and K. obovata mainly involved the classes of Bacteroidia, Gammaproteobacteria, Alphaproteobacteria, and Anaerolineae. Additionally, manganese oxidation, aerobic anoxygenic phototrophy, and fermentation functions were higher in the rhizosphere soil of K. obovata after TBBPA addition. This study supports that using suitable local halophytic plants is a promising approach for degrading TBBPA-contaminated coastal soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Law RJ, Allchin CR, de Boer J, Covaci A et al (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208

    Article  CAS  PubMed  Google Scholar 

  2. de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624

    Article  PubMed  Google Scholar 

  3. Guyot R, Chatonnet F, Gillet B, Hughes S, Flamant F (2014) Toxicogenomic analysis of the ability of brominated flame retardants TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells. Toxicology 325:125–132

    Article  CAS  PubMed  Google Scholar 

  4. Gong WJ, Zhu LY, Jiang TT, Cui H (2017) The occurrence and spatial-temporal distribution of tetrabromobisphenol A in the coastal intertidal zone of Qingdao in China, with a focus on toxicity assessment by biological monitoring. Chemosphere 185:462–467

    Article  CAS  PubMed  Google Scholar 

  5. Gu SY, Ekpeghere KI, Kim HY, Lee IS, Kim DH, Choo G, Oh JE (2017) Brominated flame retardants in marine environment focused on aquaculture area: occurrence, source and bioaccumulation. Sci Total Environ 601:1182–1191

    Article  PubMed  Google Scholar 

  6. Li H, Zhang Z, Sun Y, Wang W, Mai B (2021) Tetrabromobisphenol A and hexabromocyclododecanes in sediments and biota from two typical mangrove wetlands of South China: distribution, bioaccumulation and biomagnification. Sci Total Environ 750:141695

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Abualnaja KO, Asimakopoulos AG, Covaci A et al (2015) A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ Int 83:183–191

    Article  CAS  PubMed  Google Scholar 

  8. Bao Y, Niu J (2015) Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: kinetics, mechanism and influencing factors. Chemosphere 134:550–556

    Article  CAS  PubMed  Google Scholar 

  9. Lin K, Liu W, Gan J (2009) Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways. Environ Sci Technol 43:4480–4486

    Article  CAS  PubMed  Google Scholar 

  10. Ronen Z, Abeliovich A (2000) Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol-A. Appl Environ Microb 66:2372–2377

    Article  CAS  Google Scholar 

  11. Voordeckers JW, Fennell DE, Jones K, Max MH (2002) Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments. Environ Sci Technol 36:696–701

    Article  CAS  PubMed  Google Scholar 

  12. George KW, Häggblom MM (2008) Microbial O-methylation of the flame retardant tetrabromobisphenol-A. Environ Sci Technol 42:5555–5561

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Jiang B, Nastold P, Kolvenbach BA, Chen J, Wang L, Guo H, Corvini PFX, Ji R (2015) Enhanced transformation of tetrabromobisphenol A by nitrifiers in nitrifying activated sludge. Environ Sci Technol 49:4283–4292

    Article  CAS  PubMed  Google Scholar 

  14. Li F, Wang J, Jiang B, Wang X, Nastold P, Kolvenbach B, Wang L, Ma Y, Corvini PFX, Ji R (2015) Fate of tetrabromobisphenol A (TBBPA) and formation of ester-and ether-linked bound residues in an oxic sandy soil. Environ Sci Technol 49:12758–12765

    Article  CAS  PubMed  Google Scholar 

  15. Gu C, Wang J, Zhao ZL, Han Y, Du M, Zan S, Wang F (2019) Aerobic cometabolism of tetrabromobisphenol A by marine bacterial consortia. Environ Sci Pollut R 26:23832–23841

    Article  CAS  Google Scholar 

  16. Williams C (1996) Combatting marine pollution from land-based activities: Australian initiatives. Ocean Coast Manage 33:87–112

    Article  Google Scholar 

  17. McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotech 27:46–54

    Article  CAS  PubMed  Google Scholar 

  18. Tong F, Gu X, Gu C, Ji R, Tan Y, Xie J (2015) Insights into tetrabromobisphenol A adsorption onto soils: effects of soil components and environmental factors. Sci Total Environ 536:582–588

    Article  CAS  PubMed  Google Scholar 

  19. Liu HH, Hu YJ, Luo P, Bao LJ, Qiu JW, Leung KMY, Zeng EY (2014) Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: association with urbanization and industrialization. Environ Sci Technol 48:8465–8473

    Article  CAS  PubMed  Google Scholar 

  20. Yang CW, Liao CS, Ku H, Chang BV (2019) Biodegradation of tetrabromobisphenol-A in mangrove sediments. Sustainability 11:151

    Article  CAS  Google Scholar 

  21. Jiang Y, Lu H, Xia K et al (2020) Effect of mangrove species on removal of tetrabromobisphenol A from contaminated sediments. Chemosphere 244:125385

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Zhang L, Zhang L, Ji Z, Shao Y, Zhou H, Bao Y, Qu Y, Liu L (2019) Comparison of rhizosphere bacterial communities of reed and Suaeda in Shuangtaizi river estuary, Northeast China. Mar Pollut Bull 140:171–178

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Liu D, Xu Y, Xu J, Zhou Z, Wang P (2015) Fate and stereoselective behavior of benalaxyl in a water-sediment microcosm. J Agr Food Chem 63:5205–5211

    Article  CAS  Google Scholar 

  24. van den Brink PJ, Tarazona JV, Solomon KR, Kanacker T, van den Brink NW, Brock TC, Hoogland JP (2005) The use of terrestrial and aquatic microcosms and mesocosms for the ecological risk assessment of veterinary medicinal products. Environ Toxicol Chem 24:820–829

    Article  PubMed  Google Scholar 

  25. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:1–7

    Article  Google Scholar 

  26. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  PubMed  Google Scholar 

  27. Louca S, Parfrey L, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    Article  CAS  PubMed  Google Scholar 

  28. Jing C, Xu Z, Zou P, Tang Q, Li Y, You X, Zhang C (2019) Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta. China Appl Soil Ecol 134:1–7

    Article  Google Scholar 

  29. Gu C, Shi J, Rui J, Yu Y, Huang W, Lu Z, Chen Y, Chen X, Dong S, Hu Z, Ye C (2022) Halophyte vegetation influences soil microbial community of coastal salt marsh. J Ocean Univ China 21:1549–1556

    Article  CAS  Google Scholar 

  30. Wang X, Sun R, Tian Y, Guo K, Sun H, Liu X, Chu H, Liu B (2020) Long-term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment. Systems 5:e00741-19

    Google Scholar 

  31. Jickells TD (1998) Nutrient biogeochemistry of the coastal zone. Science 281:217–222

    Article  CAS  PubMed  Google Scholar 

  32. An F, Niu Z, Liu T, Su Y (2022) Succession of soil bacterial community along a 46-year choronsequence artificial revegetation in an arid oasis-desert ecotone. Sci Total Environ 814:152496

    Article  CAS  PubMed  Google Scholar 

  33. Sun H, Jiang L, Cui L, Feng W, Wang Y, Zhang J (2019) Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystem. FEMS Microbiol Ecol 54:351–365

    Google Scholar 

  34. Mujakić I, Piwosz K, Koblížek M (2022) Phylum Gemmatimonadota and its role in the environment. Microorganisms 10:151

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou H, Zhang D, Jiang Z, Sun P, Xiao H, Yuxin W, Chen J (2019) Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci Total Environ 651:2281–2291

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X, Wang L, Zhang X, He M, Wang D, Ren Y, Yao H, Ngegla J, Pan H (2022) Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river. Ecol Indic 136:108613

    Article  CAS  Google Scholar 

  37. Gu C, Wang J, Guo M, Sui M, Lu H, Liu G (2018) Extracellular degradation of tetrabromobisphenol A via biogenic reactive oxygen species by a marine Pseudoalteromonas sp. Water Res 142:354–362

    Article  CAS  PubMed  Google Scholar 

  38. Ma Q, Meng N, Su J, Li Y, Gu J, Wang Y, Wang J, Qu Y, Zhao Z, Sun Y (2023) Unraveling the skatole biodegradation process in an enrichment consortium using integrated omics and culture-dependent strategies. J Environ Sci 127:688–699

    Article  Google Scholar 

  39. Chi Z, Wang W, Li H, Wu H, Yan B (2021) Soil organic matter and salinity as critical factors affecting the bacterial community and function of Phragmites australis dominated riparian and coastal wetlands. Sci Total Environ 762:143156

    Article  CAS  PubMed  Google Scholar 

  40. Remucal C, Ginder-Vogel M (2014) A critical review of the reactivity of manganese oxides with organic contaminants. Environ Sci-Proc Imp 16:1247–1266

    CAS  Google Scholar 

  41. Jiao N, Sieracki ME, Zhang Y, Du H (2014) Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems. Chinese Sci Bull 48:1064–1068

    Article  Google Scholar 

Download references

Funding

This work is supported by a grant from the Postdoctoral Advance Programs of Zhejiang Province (ZJ2021022 and ZJ2021048).

Author information

Authors and Affiliations

Authors

Contributions

CG and FZ conceived and designed the study. QXS and RWG conducted the literature search and performed the experiments. WKL was involved in the analysis and interpretation of data. CG drafted the manuscript. QS: The study was supervised and tutored. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chen Gu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Human and animal participants

This study does not involve any human participants or animal experiments.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Acacio Aparecido Navarrete

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Zhang, F., Lu, K. et al. Response of microbial community in the soil of halophyte after contamination with tetrabromobisphenol A. Braz J Microbiol 54, 975–981 (2023). https://doi.org/10.1007/s42770-023-00950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00950-2

Keywords

Navigation