Skip to main content

Advertisement

Log in

Salmonella and other Enterobacteriaceae in conventional and organic vegetables grown in Brazilian farms

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

This study aimed to assess the microbiological profile of conventional and organic vegetables grown in Brazilian farms through the detection of Salmonella and other Enterobacteriaceae. A total of 200 samples (100 conventional and 100 organic), including leafy greens, spices/herbs, and other unusual vegetables, were submitted to the enumeration of Enterobacteriaceae by plating on VRBG agar. Moreover, colonies of Enterobacteriaceae were randomly selected and submitted to identification by MALDI-TOF MS. Samples were also tested for Salmonella, using culture-based and PCR-based enrichment methods. The mean counts of Enterobacteriaceae in conventional and organic vegetables were 5.1 ± 1.5 and 5.4 ± 1.4 log CFU/g, respectively (P > 0.05). A total of 18 genera (including 38 species) of Enterobacteriaceae were identified, and the most frequent ones found in samples from both farming systems were Enterobacter (76%) and Pantoea (68%). Salmonella was identified in 17 samples (8.5%): nine (4.5%) in conventional and eight (4.0%) in organic vegetables. These results indicate that the farming system had no impact on the Enterobacteriaceae populations and rates of Salmonella and revealed unsatisfactory microbiological safety of some samples, mainly due to the presence of Salmonella. These findings highlight the need for control measures during vegetable production, regardless of the farming system, to reduce microbial contamination and the risks of foodborne illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angelino D, Godos J, Ghelfi F, Tieri M, Titta L, Lafranconi A, Marventano S, Alonzo E, Gambera A, Sciacca S, Buscemi S, Ray S, Galvano F, Rio DD, Grosso G (2019) Fruit and vegetable consumption and health outcomes: an umbrella review of observational studies. Int J Food Sci Nutr 70:652–667. https://doi.org/10.1080/09637486.2019.1571021

    Article  PubMed  Google Scholar 

  2. Yahia EM, García-Solís P, Celis MEM (2019) Contribution of fruits and vegetables to human nutrition and health. In: Yahia EM (ed) Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Cambridge, pp 19–45. https://doi.org/10.1016/B978-0-12-813278-4.00002-6

  3. Gomiero T (2018) Food quality assessment in organic vs. conventional agricultural produce: findings and issues. Appl Soil Ecol 123:714–728. https://doi.org/10.1016/j.apsoil.2017.10.014

    Article  Google Scholar 

  4. Hm R, Darma R, Asrul L, Taufik DK (2020) The potential of organic agriculture, soil structure and farmers income for inclusive agriculture sustainability: a review. IOP Conf Ser: Earth Environ Sci 575:012099. https://doi.org/10.1088/1755-1315/575/1/012099

    Article  Google Scholar 

  5. Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM (2019) Organic food and the impact on human health. Crit Rev Food Sci Nutr 59:704–714. https://doi.org/10.1080/10408398.2017.1394815

    Article  PubMed  Google Scholar 

  6. Aiyedun SO, Onarinde BA, Swainson M, Dixon RA (2021) Foodborne outbreaks of microbial infection from fresh produce in Europe and North America: a systematic review of data from this millennium. Int J Food Sci Technol 56:2215–2223. https://doi.org/10.1111/ijfs.14884

    Article  CAS  Google Scholar 

  7. Aworh O (2020) Food safety issues in fresh produce supply chain with particular reference to sub-Saharan Africa. Food Control 123:107737. https://doi.org/10.1016/j.foodcont.2020.107737

    Article  CAS  Google Scholar 

  8. Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM (2019) Microbial contamination of fresh produce: what, where, and how? Compr Rev Food Sci Food Saf 18:1727–1750. https://doi.org/10.1111/1541-4337.12487

    Article  PubMed  Google Scholar 

  9. Rahman SME, Mele MA, Lee Y-T, Islam MZ (2021) Consumer preference, quality, and safety of organic and conventional fresh fruits, vegetables, and cereals. Foods 10:105. https://doi.org/10.3390/foods10010105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Winter CK, Davis SF (2006) Organic foods. J Food Sci 71:R117–R124. https://doi.org/10.1111/j.1750-3841.2006.00196.x

    Article  CAS  Google Scholar 

  11. Bohaychuk VM, Bradbury RW, Dimock R, Fehr M, Gensler GE, King RK, Rieve R, Barrios PR (2009) A microbiological survey of selected Alberta-grown fresh produce from Farmers’ Markets in Alberta, Canada. J Food Prot 72:415–420. https://doi.org/10.4315/0362-028X-72.2.415

    Article  CAS  PubMed  Google Scholar 

  12. Gomes Neto NJ, Lucena Pessoa RM, Barbosa Nunes Queiroga IM, Magnani M, de Sousa Freitas FI, de Souza EL, Maciel JF (2012) Bacterial counts and the occurrence of parasites in lettuce (Lactuca sativa) from different cropping systems in Brazil. Food Control 28:47–51. https://doi.org/10.1016/j.foodcont.2012.04.033

    Article  Google Scholar 

  13. Khalil R, Gomaa M (2014) Evaluation of the microbiological quality of conventional and organic leafy greens at the time of purchase from retail markets in Alexandria. Egypt Pol J Microbiol 63:237–243

    Article  PubMed  Google Scholar 

  14. Maffei DF, Batalha EY, Landgraf M, Schaffner DW, Franco BDGM (2016) Microbiology of organic and conventionally grown fresh produce. Braz J Microbiol 47:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marine SC, Pagadala S, Wang F, Pahl DM, Melendez MV, Kline WL, Oni RA, Walsh CS, Everts KL, Buchanan RL, Micallef SA, Griffiths MW (2015) The growing season, but not the farming system, is a food safety risk determinant for leafy greens in the Mid-Atlantic Region of the United States. Appl Environ Microbiol 81:2395–2407. https://doi.org/10.1128/AEM.00051-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merlini VV, Pena FDL, Da Cunha DT, de Oliveira JM, Rostagno MA, Antunes AEC (2018) Microbiological quality of organic and conventional leafy vegetables. J Food Qual 2018:4908316. https://doi.org/10.1155/2018/4908316

    Article  CAS  Google Scholar 

  17. Mukherjee A, Speh D, Jones AT, Buesing KM, Diez-Gonzalez F (2006) Longitudinal microbiological survey of fresh produce grown by farmers in the Upper Midwest. J Food Prot 69:1928–1936. https://doi.org/10.4315/0362-028X-69.8.1928

    Article  PubMed  Google Scholar 

  18. Oliveira M, Usall J, Viñas I, Anguera M, Gatius F, Abadias M (2010) Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiol 27:679–684. https://doi.org/10.1016/j.fm.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  19. Phillips CA, Harrison MA (2005) Comparison of the microflora on organically and conventionally grown spring mix from a California processor. J Food Prot 68:1143–1146. https://doi.org/10.4315/0362-028X-68.6.1143

    Article  PubMed  Google Scholar 

  20. Ryu J-H, Kim M, Kim E-G, Beuchat LR, Kim H (2014) Comparison of the microbiological quality of environmentally friendly and conventionally grown vegetables sold at retail markets in Korea. J Food Sci 79:M1739–M1744. https://doi.org/10.1111/1750-3841.12531

    Article  CAS  PubMed  Google Scholar 

  21. Szczech M, Kowalska B, Smolińska U, Maciorowski R, Oskiera M, Michalska A (2018) Microbial quality of organic and conventional vegetables from Polish farms. Int J Food Microbiol 286:155–161. https://doi.org/10.1016/j.ijfoodmicro.2018.08.018

    Article  PubMed  Google Scholar 

  22. Tango CN, Choi NJ, Chung MS, Oh DH (2014) Bacteriological quality of vegetables from organic and conventional production in different areas of Korea. J Food Prot 77:1411–1417. https://doi.org/10.4315/0362-028X.JFP-13-514

    Article  PubMed  Google Scholar 

  23. Wießner S, Thiel B, Krämer J, Köpke U (2009) Hygienic quality of head lettuce: effects of organic and mineral fertilizers. Food Control 20:881–886. https://doi.org/10.1016/j.foodcont.2008.11.009

    Article  CAS  Google Scholar 

  24. Foddai ACG, Grant IR (2020) Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 104:4281–4288. https://doi.org/10.1007/s00253-020-10542-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akimowicz M, Bucka-Kolendo J (2020) MALDI-TOF MS – application in food microbiology. Acta Biochim Pol 67:327–332. https://doi.org/10.18388/ABP.2020_5380

    Article  CAS  PubMed  Google Scholar 

  26. Ashfaq MY, Da’na DA, Al-Ghouti MA (2022) Application of MALDI-TOF MS for identification of environmental bacteria: a review. Environ Manage 305:114359. https://doi.org/10.1016/j.jenvman.2021.114359

    Article  CAS  Google Scholar 

  27. Ricke SC, Kim SA, Shi Z, Park SH (2018) Molecular-based identification and detection of Salmonella in food production systems: current perspectives. J Appl Microbiol 125:313–327. https://doi.org/10.1111/jam.13888

    Article  CAS  PubMed  Google Scholar 

  28. Umesha S, Manukumar HM (2018) Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit Rev Food Sci Nutr 58:84–104. https://doi.org/10.1080/10408398.2015.1126701

    Article  CAS  PubMed  Google Scholar 

  29. Kornacki JL, Gurtler JB, Stawick B (2015) Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. In: Salfinger Y, Tortorello ML (eds) Compendium of methods for the microbiological examination of foods, 5th edn. American Public Health Association, Washington, DC, pp 103–120

    Google Scholar 

  30. Alves LAC, Souza RC, da Silva TMC, Watanabe A, Dias M, Mendes MA, Ciamponi AL (2016) Identification of microorganisms in biofluids of individuals with periodontitis and chronic kidney disease using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 30:1228–1232. https://doi.org/10.1002/rcm.7555

    Article  CAS  PubMed  Google Scholar 

  31. Santos TS, Campos FB, Padovani NFA, Dias M, Mendes MA, Maffei DF (2020) Assessment of the microbiological quality and safety of minimally processed vegetables sold in Piracicaba, SP - Brazil. Lett Appl Microbiol 71:187–194. https://doi.org/10.1111/lam.13305

    Article  CAS  PubMed  Google Scholar 

  32. International Organization for Standardization (ISO) (2017) ISO 6579-1:2017 - Microbiology of the food chain – Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp. Geneva, Switzerland: International Organization for Standardization

  33. Maffei DF, Moreira DA, Silva MBR, Faria DB, Saldaña E, Ishimura I, Landgraf M, Franco BDGM (2019) Assessing the relationship between organic farming practices and microbiological characteristics of organic lettuce varieties (Lactuca sativa L.) grown in Sao Paulo, Brazil. J Appl Microbiol 127:237–247. https://doi.org/10.1111/jam.14281

    Article  CAS  PubMed  Google Scholar 

  34. GenBank BlastN (2021) BLAST: basic local alignment search tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed 6 Jan 2022

  35. Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS (2020) Molecular characterization of antimicrobial resistance and enterobacterial repetitive intergenic consensus-PCR as a molecular typing tool for Salmonella spp. isolated from poultry and humans. Vet World 13:1771–1779. https://doi.org/10.14202/vetworld.2020.1771-1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831. https://doi.org/10.1093/nar/19.24.6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fratamico PM (2003) Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol Cell Probes 17:215–221. https://doi.org/10.1016/S0890-8508(03)00056-2

    Article  CAS  PubMed  Google Scholar 

  38. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alegbeleye OO, Singleton I, Sant’Ana AS (2018) Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol 73:177–208. https://doi.org/10.1016/j.fm.2018.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sant’Anna PB, Franco BDGM, Maffei DF (2020) Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: an overview. J Sci Food Agric 100:4664–4670. https://doi.org/10.1002/jsfa.10438

    Article  CAS  PubMed  Google Scholar 

  41. Brazilian Ministry of Health (2022) Doenças de Transmissão Hídrica e Alimentar (DTHA). Surtos de Doenças de Transmissão Hídrica e Alimentar no Brasil - Informe 2022. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha/publicacoes/surtos-de-doencas-de-transmissao-hidrica-e-alimentar-no-brasil-informe-2022/view. Accessed 19 Apr 2022

  42. Finger JAFF, Baroni WSGV, Maffei DF, Bastos DHM, Pinto UM (2019) Overview of foodborne disease outbreaks in Brazil from 2000 to 2018. Foods 8:434. https://doi.org/10.3390/foods8100434

    Article  PubMed  PubMed Central  Google Scholar 

  43. Centers for Disease Control and Prevention (CDC) (2021) Lettuce, other leafy greens, and food safety. https://www.cdc.gov/foodsafety/communication/leafy-greens.html. Accessed 8 Mar 2022

  44. World Health Organization and Food and Agriculture Organization of the United Nations (WHO/FAO) (2018) Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring: report. World Health Organization. https://apps.who.int/iris/handle/10665/272871. Accessed 30 Dec 2021

  45. Fröhling A, Rademacher A, Rumpold B, Klocke M, Schlüter O (2018) Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale. Heliyon 4:e00671. https://doi.org/10.1016/j.heliyon.2018.e00671

    Article  PubMed  PubMed Central  Google Scholar 

  46. Finger JAFF, Maffei DF, Dias M, Mendes MA, Pinto UM (2021) Microbiological quality and safety of minimally processed parsley (Petroselinum crispum) sold in food markets, southeastern Brazil. J Appl Microbiol 131:272–280. https://doi.org/10.1111/jam.14935

    Article  CAS  PubMed  Google Scholar 

  47. Baylis C, Uyttendaele M, Joosten H, Davies A (2011) The Enterobacteriaceae and their significance to the food industry. Brussels, Belgium: ILSI Europe. https://ilsi.eu/wp-content/uploads/sites/3/2016/06/EP-Enterobacteriaceae.pdf. Accessed 30 Dec 2021

  48. Iwu CD, Okoh AI (2019) Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: a review. Int J Environ Res Public Health 16:4407. https://doi.org/10.3390/ijerph16224407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brazilian Ministry of Health (2022) Instrução Normativa n° 161, de 1° de julho de 2022. Estabelece os padrões microbiológicos dos alimentos. Brazil: Agência Nacional de Vigilância Sanitária (ANVISA). http://antigo.anvisa.gov.br/documents/10181/2718376/IN_161_2022_.pdf/b08d70cb-add6-47e3-a5d3-fa317c2d54b2. Accessed 6 Jan 2023

  50. Brazilian Ministry of Health (2022) Resolução RDC n° 724, de 1° de julho de 2022. Dispõe sobre os padrões microbiológicos dos alimentos e sua aplicacão. Brazil: Agência Nacional de Vigilância Sanitária (ANVISA). http://antigo.anvisa.gov.br/documents/10181/2718376/RDC_724_2022_.pdf/33c61081-4f32-43c2-9105-c318fa6069ce. Accessed 6 Jan 2023

  51. Pui CF, Wong WC, Chai LC, Tunung R, Jeyaletchumi P, Noor Hidayah MS, Ubong A, Farinazleen MG, Cheah YK, Son R (2011) Salmonella: a foodborne pathogen. Int Food Res J 18:465–473

    Google Scholar 

  52. Wadamori Y, Gooneratne R, Hussain MA (2017) Outbreaks and factors influencing microbiological contamination of fresh produce. J Sci Food Agric 97:1396–1403. https://doi.org/10.1002/jsfa.8125

    Article  CAS  PubMed  Google Scholar 

  53. Arrais BR, Ferreira MRA, Silva TS, Pinto JFN, Stella AE, Dias M, Moreira CN (2020) Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp. in lettuce. Res Soc Dev 9:e281974150. https://doi.org/10.33448/rsd-v9i7.4150

    Article  Google Scholar 

  54. Ceuppens S, Hessel CT, de Quadros RR, Bartz S, Tondo EC, Uyttendaele M (2014) Microbiological quality and safety assessment of lettuce production in Brazil. Int J Food Microbiol 181:67–76. https://doi.org/10.1016/j.ijfoodmicro.2014.04.025

    Article  PubMed  Google Scholar 

  55. de Quadros RR, Loiko MR, Daniel M, de Paula C, Hessel CT, Jacxsens L, Uyttendaele M, Bender RJ, Tondo EC (2014) Microbiological contamination linked to implementation of good agricultural practices in the production of organic lettuce in Southern Brazil. Food Control 42:152–164. https://doi.org/10.1016/j.foodcont.2014.01.043

    Article  Google Scholar 

  56. Mukherjee A, Speh D, Dyck E, Diez-Gonzalez F (2004) Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic and conventional produce grown by Minnesota farmers. J Food Prot 67:894–900. https://doi.org/10.4315/0362-028X-67.5.894

    Article  PubMed  Google Scholar 

  57. Nguz K, Shindano J, Samapundo S (2005) Microbiological evaluation of fresh-cut organic vegetables produced in Zambia. Food Control 16:623–628. https://doi.org/10.1016/j.foodcont.2004.07.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are also grateful for the use of DEMPSTER MS Lab, Polytechnic School — University of Sao Paulo, for the MALDI-TOF MS analysis.

Funding

The Sao Paulo Research Foundation (FAPESP) provided funding through grant #2013/07914–8 and the National Council for Scientific and Technological Development (CNPq) through grants #434469/2018–1 and #103204/2019–9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele F. Maffei.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors gave their consent to publish this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Mariza Landgraf

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovani, N.F.A., Santos, T.S., Almeida, P. et al. Salmonella and other Enterobacteriaceae in conventional and organic vegetables grown in Brazilian farms. Braz J Microbiol 54, 1055–1064 (2023). https://doi.org/10.1007/s42770-023-00934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00934-2

Keywords

Navigation