Skip to main content
Log in

Experimental evidence of the anti-bacterial activity pathway of copper ion treatment on Mycobacterium avium subsp. paratuberculosis

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Copper causes significant damage to the integrity of many bacteria, mainly at the DNA level, through its redox states, as well as its reactive oxygen species (ROS) generating capacity at the cellular level. But whether these mechanisms also apply to Mycobacterium avium subsp. paratuberculosis (MAP) is unknown. In the present study, we have evaluated whether copper ions produce damage at the DNA level of MAP, either through their redox states or through ROS production. MAP-spiked PBS was first supplemented with different copper chelators (2) and ROS antioxidants (3), followed by treatment with copper ions at 942 ppm. MAP DNA integrity (qPCR, magnetic phage separation) was then evaluated. We found that bathocuproine (BCS), as a chelator, and D-mannitol, as an antioxidant of hydroxyl radicals, had a significant protective effect (P < 0.05) on DNA molecules, and that EDTA, as a chelator, and D-mannitol, as an antioxidant had a significant positive effect (P < 0.05) on the viability of this pathogen in contrast to the control and other chelators and anti-oxidants used. In light of the reported findings, it may be concluded that copper ions within MAP cells are directly related to MAP DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steuer P, Avilez C, Tejeda C, Gonzalez N, Ramirez-Reveco A, Ulloa F, Mella A, Grant I, Collins MT, Salgado M (2018) In vitro inactivation of Mycobacterium avium subsp paratuberculosis (MAP) by use of copper ions. BMC Microbiol 18:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shahzadi S, Zafar N, Sharif R (2018) Antibacterial activity of metallic nanoparticles, Bacterial Pathogenesis and Antibacterial Control. IntechOpen

  3. Salah I, Parkin IP, Allan E (2021) Copper as an antimicrobial agent: recent advances. RSC Adv 11:18179–18186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Med Chem 3:272–278

    CAS  Google Scholar 

  5. Chaterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnol 25:135101

    Article  Google Scholar 

  6. Warnes SL, Keevil SW (2016) Lack of involvement of fenton chemistry in death of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus and destruction of their genomes on wet or dry copper alloy surfaces. Appl Environ Microbiol 7:2132–2136

    Article  Google Scholar 

  7. Vincent M, Duval RE, Hartemann P, Engels-Deutsch M (2017) Contact killing and antimicrobial properties of copper. J Appl Microbiol 124:1032–1046

    Article  Google Scholar 

  8. Dalecki AG, Crawford CL, Wolschendorf F (2017) Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv Microb Physiol 70:193–260

    Article  CAS  PubMed  Google Scholar 

  9. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  PubMed  Google Scholar 

  10. Singh SV, Singh AV, Kumar A, Singh PK, Deb R, Verma AM, Kumar A, Tiwari R, Chakraborty S, Dhama K (2013) Survival mechanisms of Mycobacterium avium subspecies paratuberculosis within host species and in the environment-a review. Nat Sci 5(6):710–723

    Google Scholar 

  11. Steuer P, Tejeda C, Martinez O, Ramirez-Reveco A, Gonzalez N, Grant IR, Foddai ACG, Collins MT, Salgado M (2020) Effectiveness of copper ions against Mycobacterium avium subsp. paratuberculosis and bacterial communities in naturally contaminated raw cow’s milk. J Appl Microbiol 131:146–154

    Article  PubMed  Google Scholar 

  12. Tejeda C, Steuer P, Villegas M, Reyes-Jara A, Iranzo E, Umaña R, Salgado M (2022) More insights about the efficacy of copper ion treatment on Mycobacterium avium subsp. paratuberculosis (MAP): a clue for the observed tolerance. Pathogens 11(2):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tejeda C, Villegas M, Steuer P, Iranzo E, Gonzalez N, Ramirez-Reveco A, Salgado M (2022) Understanding the antibacterial mechanisms of copper ion treatment on Mycobacterium avium subsp. paratuberculosis. Vet Microbiol 268:109412

    Article  CAS  PubMed  Google Scholar 

  14. Joudeh N, Saragliadis A, Schulz C, Voigt A, Almaas E, Linke D (2021) Transcriptomic response analysis of Escherichia coli to palladium stress. Front Microbiol 12:741836

    Article  PubMed  PubMed Central  Google Scholar 

  15. Warnes SL, Keevil SW (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77(17):6049–6059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    Article  CAS  PubMed  Google Scholar 

  17. Robak J, Gryglewski R (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharm 37(5):837–841

    Article  CAS  PubMed  Google Scholar 

  18. Shin SJ, Han JH, Manning EJB, Collins MT (2007) Rapid and reliable method for quantification of Mycobacterium paratuberculosis by use of the BACTEC MGIT 960 System. J Clin Microbiol 45:1941–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jorhem L, Afthan G, Cumont G, Dypdahl HP, Gadd K, Havre GN, Julshamn K, Kåverud K, Lind B, Loimaranta J, Merseburg M, Olsson A, Piepponen S, Sundström B, Uppstad BJ, Waaler T, Winnerstam L (2000) Determination of metals in foods by atomic absorption spectrometry after dry ashing: NMKL1 collaborative study. J AOAC Int 83(5):1204–1211

    Article  CAS  PubMed  Google Scholar 

  20. Salgado M, Alfaro M, Salazar F, Badilla X, Troncoso E, Zambrano A, Gonzalez M, Mitchell RM, Collins MT (2015) Application of cattle slurry containing Mycobacterium avium subsp. paratuberculosis (MAP) to grassland soil and its effect on the relationship between MAP and free-living amoeba. Vet Microbiol 175:26–34

    Article  CAS  PubMed  Google Scholar 

  21. Foddai ACG, Grant IR (2020) A novel one-day phage-based test for rapid detection and enumeration of viable Mycobacterium avium subsp. paratuberculosis in cows’ milk. Appl Microbiol and Biotech 104:9399–9412

    Article  CAS  Google Scholar 

  22. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  PubMed  Google Scholar 

  23. May KL, Lehman KM, Mitchell AM, Grabowicz M (2019) A stress response monitoring lipoprotein trafficking to the outer membrane. mBio 10(3):e00618-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  25. Chen D, Darabedian N, Li Z, Kai T, Jiang D, Zhou F (2016) An improved bathocuproine assay for accurate valence identification and quantification of copper bound by biomolecules. Anal Biochem 497:27–35

    Article  CAS  PubMed  Google Scholar 

  26. Strausak D, Mercer JFB, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55:175–185

    Article  CAS  PubMed  Google Scholar 

  27. Kostić DA, Miletić GŽ, Mitić SS, Rašić ID, Živanović VV (2007) Spectrophotometric determination of microamounts of quercetin based on its complexation with copper (II). Chem Pap 61(2):73–76

    Article  Google Scholar 

  28. Herthnek D, Englund S, Willemsen PTJ, Bölske G (2006) Sensitive detection of Mycobacterium avium subsp. paratuberculosis in bovine semen by real-time PCR. J Appl Microbiol 100:1095–1102

    Article  CAS  PubMed  Google Scholar 

  29. Salgado M, Verdugo C, Heuer C, Castillo P, Zamorano P (2013) A novel low-cost method for Mycobacterium avium subsp. paratuberculosis DNA extraction from an automated broth culture system for a real time PCR confirmation. J Vet Sci 15:233–239

    Article  PubMed  Google Scholar 

  30. Maketon W, Zenner CZ, Ogden KL (2008) Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine. Environ Sci Technol 42:2124–2129

    Article  CAS  PubMed  Google Scholar 

  31. Lam PL, Wong RM, Lam KH, Hung LK, Wong MM, Yung LH, Chui CH (2020) The role of reactive oxygen species in the biological activity of antimicrobial agents: an updated mini review. Chemico-Biol Interact 320:109023

    Article  CAS  Google Scholar 

  32. Rocha ER, Selby T, Coleman JP, Smith CJ (1996) Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol 178:6895–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med 48(6):749–762

    Article  CAS  Google Scholar 

  34. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tkeshelashvili LK, McBride T, Spence K, Loeb LA (1990) Mutation spectrum of copper-induced DNA damage. J Biol Chem 266:6401–6406

    Article  Google Scholar 

  36. André P, Villain F (2017) Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: a literature review. Int J Cosmet Sci 39:355–360

    Article  PubMed  Google Scholar 

  37. Liu X, Feng Z, Harris NB, Cirillo JD, Bercovier H, Barletta RG (2001) Identification of a secreted superoxide dismutase in Mycobacterium avium ssp Paratuberculosis. FEMS Microbiol Lett 202:233–238

    Article  CAS  PubMed  Google Scholar 

  38. Granger K, Moore RJ, Davies JK, Vaughan JA, Stiles PL, Stewart DJ, Tizard MLV (2004) Recovery of Mycobacterium avium subspecies paratuberculosis from the natural host for the extraction and analysis in vivo-derived RNA. J Microbiol Methods 57:241–249

    Article  CAS  PubMed  Google Scholar 

  39. Weigoldt M, Meens J, Bange FC, Pich A, Gerlach GF, Goethe R (2013) Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut enviroment. Microbiol 159:380–439

    Article  CAS  Google Scholar 

  40. Dolan SK, Welch M (2018) The glyoxylate shunt, 60 years on. Annual Rev Microbiol 72:309–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FONDECYT Grant (1201574). Carlos Tejeda was the recipient of a Doctoral Studentship from the Chilean government (CONICYT) during the present study and it was part of a Doctoral Thesis of the Universidad Austral de Chile.

Funding

This research was financed by FONDECYT Grant No. 1201574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Salgado.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejeda, C., Villegas, M., Steuer, P. et al. Experimental evidence of the anti-bacterial activity pathway of copper ion treatment on Mycobacterium avium subsp. paratuberculosis. Braz J Microbiol 54, 407–413 (2023). https://doi.org/10.1007/s42770-022-00897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00897-w

Keywords

Navigation