Skip to main content

Advertisement

Log in

Characterization of unconventional pathogenic Escherichia coli isolated from bloodstream infection: virulence beyond the opportunism

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of urinary tract infection worldwide and a critical bloodstream infection agent. There are more than 50 virulence factors (VFs) related to ExPEC pathogenesis; however, many strains isolated from extraintestinal infections are devoid of these factors. Since opportunistic infections may occur in immunocompromised patients, E. coli strains that lack recognized VFs are considered opportunist, and their virulence potential is neglected. We assessed eleven E. coli strains isolated from bloodstream infections and devoid of the most common ExPEC VFs to understand their pathogenic potential. The strains were evaluated according to their capacity to interact in vitro with human eukaryotic cell lineages (Caco-2, T24, HEK293T, and A549 cells), produce type 1 fimbriae and biofilm in diverse media, resist to human sera, and be lethal to Galleria mellonella. One strain displaying all phenotypic traits was sequenced and evaluated. Ten strains adhered to Caco-2 (colon), eight to T24 (bladder), five to HEK-293 T (kidney), and four to A549 (lung) cells. Eight strains produced type 1 fimbriae, ten adhered to abiotic surfaces, nine were serum resistant, and seven were virulent in the G. mellonella model. Six of the eleven E. coli strains displayed traits compatible with pathogens, five of which were isolated from an immune-competent host. The genome of the EC175 strain, isolated from a patient with urosepsis, reveals that the strain belonged to ST504-A, and serotype O11:H11; harbors thirteen VFs genes, including genes encoding UpaG and yersiniabactin as the only ExPEC VFs identified. Together, our results suggest that the ExPEC pathotype includes pathogens from phylogroups A and B1, which harbor VFs that remain to be uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The Whole Genome Shotgun project of E. coli EC175 has been deposited at DDBJ/ENA/GenBank under the accession JALLIP000000000. The version described in this article is version JALLIP010000000.

References

  1. Leimbach A, Hacker J, Dobrindt U (2013) E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol 358:3–32. https://doi.org/10.1007/82_2012_303

  2. Martinson JNv, Walk ST (2020) Escherichia coli residency in the gut of healthy human adults. EcoSal Plus 9(1). https://doi.org/10.1128/ecosalplus.esp-0003-2020

  3. Johnson JR, Russo TA (2018) Molecular epidemiology of extraintestinal pathogenic Escherichia coli. EcoSal Plus 8(1). https://doi.org/10.1128/ecosalplus.ESP-0004-2017

  4. Ewers C, Li G, Wilking H et al (2007) Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297(3):163–176. https://doi.org/10.1016/j.ijmm.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Santos ACM, Santos FF, Silva RM, Gomes TAT (2020) Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front Cell Infect Microbiol 10:339. https://doi.org/10.3389/FCIMB.2020.00339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mellata M (2013) Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis 10(11):916–932. https://doi.org/10.1089/fpd.2013.1533

    Article  PubMed  PubMed Central  Google Scholar 

  7. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD (2019) Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 32(3). https://doi.org/10.1128/CMR.00135-18

  8. Messika J, Magdoud F, Clermont O et al (2012) Pathophysiology of Escherichia coli ventilator-associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care Med 38(12):2007–2016. https://doi.org/10.1007/s00134-012-2699-5

    Article  PubMed  Google Scholar 

  9. Nunes PHS, Valiatti TB, de Santos ACM et al (2022) Evaluation of the pathogenic potential of Escherichia coli strains isolated from eye infections. Microorganisms 10(6):1084. https://doi.org/10.3390/microorganisms10061084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santos ACM, Fuga B, Esposito F et al (2021) Unveiling the virulent genotype and unusual biochemical behavior of Escherichia coli ST59. Appl Environ Microbiol 87(16):e0074321. https://doi.org/10.1128/AEM.00743-21

  11. Köhler CD, Dobrindt U (2011) What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301(8):642–647. https://doi.org/10.1016/J.IJMM.2011.09.006

    Article  PubMed  Google Scholar 

  12. Freire CA, Santos ACM, Pignatari AC, Silva RM, Elias WP (2020) Serine protease autotransporters of Enterobacteriaceae (SPATEs) are largely distributed among Escherichia coli isolated from the bloodstream. Braz J Microbiol 51(2):447–454. https://doi.org/10.1007/s42770-020-00224-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santos ACM, Zidko ACM, Pignatari AC, Silva RM (2013) Assessing the diversity of the virulence potential of Escherichia coli isolated from bacteremia in São Paulo, Brazil. Braz J Med Biol Res 46(11):968–973. https://doi.org/10.1590/1414-431X20133184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santos ACM. Virulence potential and antimicrobial susceptibility of Escherichia coli strains isolated from bacteremia. Their relationship with immunological competence of the host, and the origin of infection. PhD Thesis. Universidade Federal de SĂŁo Paulo; 2013. Accessed June 19, 2019. http://repositorio.unifesp.br/handle/11600/22975

  15. Santos ACM, Silva RM, Valiatti TB et al (2020) Virulence potential of a multidrug-resistant Escherichia coli strain belonging to the emerging clonal group ST101-B1 isolated from bloodstream infection. Microorganisms 8(6):827. https://doi.org/10.3390/microorganisms8060827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5(1):58–65. https://doi.org/10.1111/1758-2229.12019

    Article  CAS  PubMed  Google Scholar 

  17. Dozois CM, Clément S, Desautels C, Oswald E, Fairbrother JM (2006) Expression of P, S, and F1C adhesins by cytotoxic necrotizing factor 1-producing Escherichia coli from septicemic and diarrheic pigs. FEMS Microbiol Lett 152(2):307–312. https://doi.org/10.1111/j.1574-6968.1997.tb10444.x

    Article  Google Scholar 

  18. Valiatti TB, Santos FF, Santos ACM et al (2020) Genetic and virulence characteristics of a hybrid atypical enteropathogenic and uropathogenic Escherichia coli (aEPEC/UPEC) strain. Front Cell Infect Microbiol 10:492. https://doi.org/10.3389/fcimb.2020.00492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malberg Tetzschner AM, Johnson JR, Johnston BD, Lund O, Scheutz F (2020) In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J Clin Microbiol. https://doi.org/10.1128/JCM.01269-20

  20. Joensen KG, Scheutz F, Lund O et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510. https://doi.org/10.1128/JCM.03617-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10. https://doi.org/10.1186/1471-2105-10-421

  22. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72(10):2764–2768. https://doi.org/10.1093/jac/dkx217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bortolaia V, Kaas RS, Ruppe E et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12):3491–3500. https://doi.org/10.1093/JAC/DKAA345

  24. Carattoli A, Zankari E, García-Fernández A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roer L, Johannesen TB, Hansen F et al (2018) CHTyper, a web tool for subtyping of extraintestinal pathogenic Escherichia coli based on the fumC and fimH alleles. J Clin Microbiol 56(4):63–81. https://doi.org/10.1128/JCM.00063-18

  26. Wirth T, Falush D, Lan R et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60(5):1136–1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x

  27. Liu B, Zheng D, Jin Q, Chen L, Yang J (2018) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47:687–692. https://doi.org/10.1093/nar/gky1080

    Article  CAS  Google Scholar 

  28. Wattam AR, Davis JJ, Assaf R et al (2017) Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45(D1):D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  29. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab301

  30. Denamur E, Clermont O, Bonacorsi S, Gordon D (2020) The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19(1):1–18. https://doi.org/10.1038/s41579-020-0416-x

    Article  CAS  Google Scholar 

  31. Lüthje P, Brauner A (2014) Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol 65:337–372. https://doi.org/10.1016/bs.ampbs.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  32. Müller CM, Åberg A, Straseviçiene J, Emody L, Uhlin BE, Balsalobre C (2009) Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 5(2). https://doi.org/10.1371/journal.ppat.1000303

  33. Johnson JR, Weissman SJ, Stell AL, Trintchina E, Dykhuizen DE, Sokurenko Ev (2001) Clonal and pathotypic analysis of archetypal Escherichia coli cystitis isolate NU14. J Infect Dis 184(12):1556–1565. https://doi.org/10.1086/323891

    Article  CAS  PubMed  Google Scholar 

  34. Sokurenko Ev, Chesnokova V, Dykhuizen DE et al (1998) Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95(15):8922–8926. https://doi.org/10.1073/PNAS.95.15.8922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mydock-McGrane L, Cusumano Z, Han Z et al (2016) Antivirulence C-mannosides as antibiotic-sparing, oral therapeutics for urinary tract infections. J Med Chem 59(20):9390–9408. https://doi.org/10.1021/acs.jmedchem.6b00948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neugent ML, Hulyalkar NV, Nguyen VH, Zimmern PE, De Nisco NJ (2020) Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. MBio 11(2). https://doi.org/10.1128/mBio.00218-20

  37. Eto DS, Jones TA, Sundsbak JL, Mulvey MA (2007) Integrin-mediated host cell invasion by type 1–piliated uropathogenic Escherichia coli. PLoS Pathog 3(7):e100. https://doi.org/10.1371/JOURNAL.PPAT.0030100

  38. Connell H, Agace W, Klemm P, Schembri M, Mårild S, Svanborg C (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93(18):9827–9832. https://doi.org/10.1073/pnas.93.18.9827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watts RE, Hancock V, Ong CLY et al (2010) Escherichia coli isolates causing asymptomatic bacteriuria in catheterized and noncatheterized individuals possess similar virulence properties. J Clin Microbiol 48(7):2449–2458. https://doi.org/10.1128/JCM.01611-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Avalos Vizcarra I, Hosseini V, Kollmannsberger P et al (2015) How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci Rep 2016(6):1–13. https://doi.org/10.1038/srep18109

  41. Kim KS (2016) Human meningitis-associated Escherichia coli. EcoSal Plus 7(1). https://doi.org/10.1128/ECOSALPLUS.ESP-0015-2015

  42. Bessaiah H, Anamalé C, Sung J, Dozois CM (2021) What flips the switch? Signals and stress regulating extraintestinal pathogenic Escherichia coli type 1 fimbriae (pili). Microorganisms 10(5):5. https://doi.org/10.3390/MICROORGANISMS10010005

  43. Miyazaki J, Ba-Thein W, Kumao T et al (2002) Type 1, P and S fimbriae, and afimbrial adhesin I are not essential for uropathogenic Escherichia coli to adhere to and invade bladder epithelial cells. FEMS Immunol Med Microbiol 33(1):23–26

  44. Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C (2010) Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol 12(7):1957–1977. https://doi.org/10.1111/j.1462-2920.2010.02202.x

  45. Snyder JA, Haugen BJ, Lockatell CV et al (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596. https://doi.org/10.1128/IAI.73.11.7588-7596.2005

  46. Saldaña Z, De la Cruz MA, Carrillo-Casas EM et al (2014) Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium. PLoS One 9(7):e101200. https://doi.org/10.1371/journal.pone.0101200

  47. Rendón MA, Saldaña Z, Erdem AL et al (2007) Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104(25):10637–10642. https://doi.org/10.1073/PNAS.0704104104

  48. Rossez Y, Holmes A, Lodberg-Pedersen H et al (2014) Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants. J Biol Chem 289(49):34349–34365. https://doi.org/10.1074/JBC.M114.587717

  49. Lehti TA, Bauchart P, Heikkinen J et al (2010) Mat fimbriae promote biofilm formation by meningitis-associated Escherichia coli. Microbiology (N Y) 156(8):2408–2417. https://doi.org/10.1099/MIC.0.039610-0

  50. Pouttu R, Westerlund-Wikström B, Lång H et al (2001) matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol 183(16):4727–4736. https://doi.org/10.1128/JB.183.16.4727-4736.2001

  51. Day CJ, Lo AW, Hartley-Tassell LE et al (2021) Discovery of bacterial fimbria–glycan interactions using whole-cell recombinant Escherichia coli expression. mBio 12(1):1–10. https://doi.org/10.1128/MBIO.03664-20/SUPPL_FILE/MBIO.03664-20-ST001.DOCX

  52. Novais Â, Pires J, Ferreira H et al (2012) Characterization of globally spread Escherichia coli ST131 isolates (1991 to 2010). Antimicrob Agents Chemother 56(7):3973–3976. https://doi.org/10.1128/AAC.00475-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ponnusamy P, Natarajan V, Sevanan M (2012) In vitro biofilm formation by uropathogenic Escherichia coli and their antimicrobial susceptibility pattern. Asian Pac J Trop Med 5(3):210–213. https://doi.org/10.1016/S1995-7645(12)60026-1

  54. Agarwal J, Mishra B, Srivastava S, Srivastava R (2013) Genotypic characteristics and biofilm formation among Escherichia coli isolates from Indian women with acute cystitis. Trans R Soc Trop Med Hyg 107(3):183–187. https://doi.org/10.1093/trstmh/trs090

    Article  CAS  PubMed  Google Scholar 

  55. Tapiainen T, Hanni AM, Salo J, Ikäheimo I, Uhari M (2014) Escherichia coli biofilm formation and recurrences of urinary tract infections in children. Eur J Clin Microbiol Infect Dis 33(1):111–115. https://doi.org/10.1007/s10096-013-1935-4

    Article  CAS  PubMed  Google Scholar 

  56. Flament-Simon SC, Nicolas-Chanoine MH, GarcĂ­a V et al (2020) Clonal structure virulence factor-encoding genes and antibiotic resistance of Escherichia coli causing urinary tract infections and other extraintestinal infections in humans in Spain and France during 2016. Antibiotics 9(4):161. https://doi.org/10.3390/ANTIBIOTICS9040161

  57. Pont S, Fraikin N, Caspar Y, van Melderen L, Attrée I, Cretin F (2020) Bacterial behavior in human blood reveals complement evaders with some persister-like features. PLoS Pathog. 16(12). https://doi.org/10.1371/JOURNAL.PPAT.1008893

  58. Miajlovic H, Smith SG (2014) Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett 354(1):1–9. https://doi.org/10.1111/1574-6968.12419

  59. Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4(1):80–128. https://doi.org/10.1128/CMR.4.1.80

  60. Biran D, Rosenshine I, Ron EZ (2020) Escherichia coli O-antigen capsule (group 4) is essential for serum resistance. Res Microbiol 171(2):99–101. https://doi.org/10.1016/J.RESMIC.2019.12.002

  61. Dutra IL, Araújo LG, Assunção RG et al (2020) Pic-producing Escherichia coli induces high production of proinflammatory mediators by the host leading to death by sepsis. Int J Mol Sci 21(6):2068. https://doi.org/10.3390/ijms21062068

  62. Freire CA, Silva RM, Ruiz RC et al (2022) Secreted autotransporter toxin (Sat) mediates innate immune system evasion. Front Immunol 13:433. https://doi.org/10.3389/FIMMU.2022.844878/BIBTEX

    Article  Google Scholar 

  63. Weiser JN, Gotschlich EC (1991) Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 59(7):2252–2258. https://doi.org/10.1128/IAI.59.7.2252-2258.1991

  64. Coggon CF, Jiang A, Goh KGK, Henderson IR, Schembri MA, Wells TJ (2018) A novel method of serum resistance by Escherichia coli that causes urosepsis. mBio. 9(3). https://doi.org/10.1128/MBIO.00920-18

  65. Liu J, Huang L, Luo M, Xia X (2019) Bacterial translocation in acute pancreatitis. Crit Rev Microbiol 45(5–6):539–547. https://doi.org/10.1080/1040841X.2019.1621795

    Article  PubMed  Google Scholar 

  66. Ma D, Jiang P, Jiang Y, Li H, Zhang D (2021) Effects of lipid peroxidation-mediated ferroptosis on severe acute pancreatitis-induced intestinal barrier injury and bacterial translocation. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6644576

  67. Ciesielczuk H, Betts J, Phee L et al (2015) Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence 6(2):145–151. https://doi.org/10.4161/21505594.2014.988095

  68. Williamson DA, Mills G, Johnson JR, Porter S, Wiles S (2014) In vivo correlates of molecularly inferred virulence among extraintestinal pathogenic Escherichia coli (ExPEC) in the wax moth Galleria mellonella model system. Virulence 5(3):388–393. https://doi.org/10.4161/viru.27912

  69. Heitmueller M, Billion A, Dobrindt U, Vilcinskas A, Mukherjee K (2017) Epigenetic mechanisms regulate innate immunity against uropathogenic and commensal-like Escherichia coli in the surrogate insect model Galleria mellonella. Infect Immun 85(10):e00336–17. https://doi.org/10.1128/IAI.00336-17

  70. Alghoribi MF, Gibreel TM, Dodgson AR, Beatson SA, Upton M (2014) Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS One 9(7):e101547. https://doi.org/10.1371/journal.pone.0101547

  71. Pereira TC, Barros PP de, de Oliveira Fugisaki LR et al (2018) Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. J Fungi 4(4):128. https://doi.org/10.3390/JOF4040128

  72. Valle J, Mabbett AN, Ulett GC et al (2008) UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 190(12):4147–4161. https://doi.org/10.1128/JB.00122-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. William O’Hara R, Jenks PJ, Emery M, Upton M (2019) Rapid detection of extra-intestinal pathogenic Escherichia coli multi-locus sequence type 127 using a specific PCR assay. J Med Microbiol 68(2):188–196. https://doi.org/10.1099/JMM.0.000902

    Article  Google Scholar 

  74. Totsika M, Wells TJ, Beloin C et al (2012) Molecular characterization of the EhaG and UpaG trimeric autotransporter proteins from pathogenic Escherichia coli. Appl Environ Microbiol 78(7):2179–2189. https://doi.org/10.1128/AEM.06680-11

  75. Sikdar R, Bernsteina HD (2019) Sequential translocation of polypeptides across the bacterial outer membrane through the trimeric autotransporter pathway. MBio 10(5). https://doi.org/10.1128/MBIO.01973-19

  76. Carniel E, Guilvout I, Prentice M (1996) Characterization of a large chromosomal “high-pathogenicity island” in biotype 1B Yersinia enterocolitica. J Bacteriol 178(23):6743. https://doi.org/10.1128/JB.178.23.6743-6751.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buchrieser C, Prentice M, Carniel E (1998) The 102-kilobase unstable region of Yersinia pestis comprises a high- pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol 180(9):2321–2329. https://doi.org/10.1128/JB.180.9.2321-2329.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Galardini M, Clermont O, Baron A et al (2020) Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 16(10):e1009065. https://doi.org/10.1371/journal.pgen.1009065

Download references

Acknowledgements

We are grateful to Prof. Dr. Erika Suzuki and Prof. Dr. Nilton Lincopan for providing the A549 cell lineage, and the G. mellonella larvae, respectively. EC175 genome was sequenced using MicrobesNG (Birmingham Research Park, Birmingham, UK) sequencing service.

Funding

This study was supported by the National Council for Science and Technological Development (CNPq) [304760/2015–3 and 311283/2020–9 to TATG] and by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [2017/14821-7 and 2018/17353–7 to TATG]; ACMS received PNPD fellowship [88882.306532/2018–01] from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) under financial code 001; JFSN received scholarship from FAPESP [2019/21685–8], and LOT from CNPq [168193/2018–3].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ACMS, RMS, and TATG. Formal analysis: ACMS. Funding acquisition: TATG. Investigation: ACMS, JFSN, LOT, and RFTR. Validation: ACMS, JFSN, and LOT. Project administration: ACMS. Resources: RMS, TATG. Supervision: ACMS, TATG. Visualization: ACMS. Writing — original draft: ACMS. Writing — review and editing: ACMS, JFSN, RMS, and TATG.

Corresponding authors

Correspondence to Ana Carolina M. Santos or Tânia A. T. Gomes.

Ethics declarations

Ethical approval

This research was done with approval of the Research Ethics Committee of the Federal University of São Paulo—UNIFESP/São Paulo Hospital (CEP N 7140160317 from April 2017).

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.C.M., Santos-Neto, J.F., Trovão, L.O. et al. Characterization of unconventional pathogenic Escherichia coli isolated from bloodstream infection: virulence beyond the opportunism. Braz J Microbiol 54, 15–28 (2023). https://doi.org/10.1007/s42770-022-00884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00884-1

Keywords

Navigation