Skip to main content

Advertisement

Log in

Bacillus subtilis and Bacillus licheniformis promote tomato growth

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus spp. are widely marketed and used in agricultural systems as antagonists to various phytopathogens, but it can also benefit the plant as plant growth promoters. Therefore, the longer presence of the bacterium in the rhizosphere would result in a prolonged growth-promoting benefit, but little is yet known about its persistence in the rhizosphere after seed coating. The objectives of this study were to evaluate the tomato growth promotion mediated by Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 and the survival rate of these bacteria both in shoots and in the rhizosphere. The Bacillus strains used throughout this study were obtained from Quartzo® produced by Chr. Hansen. The application of a mixture of B. subtilis and B. licheniformis (Quartzo®) at concentrations 1 × 108, 1 × 109, and 1 × 1010 CFU mL−1, as well as the application of B. subtilis and B. licheniformis individually at concentration 1 × 108 CFU mL−1, increased fresh and dry masses of shoot and root system, volume of root system, and length of roots of tomato plants when compared to control. Both Bacillus strains produced IAA after 48 h of in vitro. Bacillus colonies obtained from plant sap were morphologically similar to colonies of B. subtilis and B. licheniformis strains and were detected in inoculated on plants and not detected in control ones. A similar pattern was obtained through DNA-based detection (qPCR). Therefore, B. subtilis and B. licheniformis were able to produce auxin, promote tomato growth, and colonize and persist in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Laliberte M, Frauley K, Kutcchaw T, Simonson C, Zaleska I, Lee L (1988) Plant growth-promoting rhizobacteria on canola (rapeseed). Plant Dis 72(1):42–46

    Article  Google Scholar 

  2. Kloepper JW (1992) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc, New York, pp 255–274

    Google Scholar 

  3. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  4. Hayat R, Ahmed I, Sheirdil RA (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Crop production for agricultural improvement. In: Ashraf M, Öztürk M, Ahmad M, Aksoy A (eds) Crop production for agricultural improvement. Springer, Dordrecht, pp 557–579. https://doi.org/10.1007/978-94-007-4116-4_22

    Chapter  Google Scholar 

  5. Reddy MS, Yellareddygari SKR, Kumar KVK, Sudini H, Kloepper JW, Sairam KVSS, Wang Q, Arwiyanto T, Liu S, Sarma YR, Surendranatha Reddy EC, Vinh NC, Archana G, Naik MK, Soesanto L, Zhou XG, Dilantha Fernado WG, Inan-ul-Haq M, Park KS, Egamberdieva D, Sayyed RZ, Zhang S, Du B, Zhi-lin Y, Zhi-ling Y (2011) Commercial potential of biofertilizers and biofungicides (PGPR) for sustainable agriculture in Asia and the scope of Asian PGPR Society. In: Reddy MS, Wang Q (eds) Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. Proceeding of the 2nd Asian PGPR Conference, 2011, Beijing, China, pp 21–24

  6. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  7. Shi JW, Lu LX, Shi HM, Ye JR (2022) Effects of plant growth-promoting rhizobacteria on the growth and soil microbial community of carya illinoinensis. Curr Microbiol 79(11):1–12. https://doi.org/10.1007/S00284-022-03027-9

    Article  Google Scholar 

  8. Liu J, Zhang J, Zhu M et al (2022) Effects of plant growth promoting rhizobacteria (PGPR) strain bacillus licheniformis with biochar amendment on potato growth and water use efficiency under reduced irrigation regime. Agron 12(5):1031. https://doi.org/10.3390/AGRONOMY12051031

    Article  CAS  Google Scholar 

  9. de Lima BC, Moro AL, Santos ACP, Bonifacio A, Araujo ASF, de Araujo FF (2019) Bacillus subtilis ameliorates water stress tolerance in maize and common bean. J Plant Interact 14(1):432–439. https://doi.org/10.1080/17429145.2019.1645896

    Article  CAS  Google Scholar 

  10. Rabbee MF, Sarafat Ali M, Choi J, Hwang BS, Jeong SC, Baek K, hyun. (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Mol 24(6):1046. https://doi.org/10.3390/MOLECULES24061046

    Article  CAS  Google Scholar 

  11. Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Muller R, Moelbak L, Liu F, Roitsch T (2020) Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front Plant Sci 11:297. https://doi.org/10.3389/fpls.2020.00297

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7):1037. https://doi.org/10.3390/microorganisms8071037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7(6):579–586. https://doi.org/10.1016/j.mib.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513. https://doi.org/10.1016/j.micres.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  15. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world – pesticide use and management. InTech, Rijeka, pp 273–302

    Google Scholar 

  17. Radhakrishnan R, Hashem A, AbdˍAllah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667. https://doi.org/10.3389/fphys.2017.00667

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hashem A, Tabassum B, FathiAbdˍAllah E (2019) Bacillussubtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Medeiros CAA, Bettiol W (2021) Multifaceted intervention of Bacillus spp. against salinity stress and Fusarium wilt in tomato. J Appl Microbiol 31(5):2387–2401. https://doi.org/10.1111/jam.15095

    Article  CAS  Google Scholar 

  20. GuimarãesPacifico M, Eckstein B, Bettiol W (2021) Screening of Bacillus for the development of bioprotectants for the control of Fusarium oxysporum f. sp. vasinfectum and Meloidogye incognita. Biol Control 164:104764. https://doi.org/10.1016/j.biocontrol.2021.104764

    Article  CAS  Google Scholar 

  21. Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  22. Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Keyani R, Mumtaz S, Hassan MN (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. Penna S, ed. PLoS One 15(4):e0231348. https://doi.org/10.1371/journal.pone.0231348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci 26(1):1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  24. Torres M, Llamas I, Torres B, Toral L, Sampedro I, Béjar V (2020) Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Appl Soil Ecol 150:103453. https://doi.org/10.1016/j.apsoil.2019.103453

    Article  Google Scholar 

  25. Soni R, Keharia H (2021) Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta 54(3):49. https://doi.org/10.1007/s00425-021-03695-0

    Article  CAS  Google Scholar 

  26. Kamilova F, Okon Y, de Weert S, Hora K (2015) Commercialization of microbes: manufacturing, inoculation, best practice for objective field testing, and registration. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 319–327. https://doi.org/10.1007/978-3-319-08575-3_33

    Chapter  Google Scholar 

  27. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20(6):619–626. https://doi.org/10.1094/MPMI-20-6-0619

    Article  CAS  PubMed  Google Scholar 

  28. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33(11):197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR). J Agric Res Dev 5(2):108–119

    Google Scholar 

  30. Saleem M, Meckes N, Pervaiz ZH, Traw MB (2017) Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Front Microbiol 8:41. https://doi.org/10.3389/fmicb.2017.00041

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bavaresco LG, Osco LP, Araujo ASF, Mendes LW, Bonifacio A, Araújo FF (2020) Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theor Exp Plant Physiol 32(2):99–108. https://doi.org/10.1007/s40626-020-00173-y

    Article  CAS  Google Scholar 

  32. Ambawade MS, Pathade GR (2015) Production of gibberellic acid by Bacillus siamensis BE 76 isolated from banana plant (Musa spp). Int J Sci Res 4(7):394–398

    Google Scholar 

  33. Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Ansari R, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 219–236. https://doi.org/10.1007/978-981-13-6040-4_11

  34. Zerrouk IZ, Rahmoune B, Auer S, Rößler S, Lin T, Baluska F, Dobrev PL, Motyka V, Ludwig-Müller J (2020) Growth and aluminum tolerance of maize roots mediated by auxin- and cytokinin-producing Bacillus toyonensis requires polar auxin transport. Environ Exp Bot 176:104064. https://doi.org/10.1016/j.envexpbot.2020.104064

    Article  CAS  Google Scholar 

  35. Araujo FF, Bonifacio A, Bavaresco LG, Mendes LW, Araujo ASF (2021) Bacillus subtilis changes the root architecture of soybean grown on nutrient-poor substrate. Rhizosphere 18:100348. https://doi.org/10.1016/j.rhisph.2021.100348

    Article  Google Scholar 

  36. Samaras A, Roumeliotis E, Ntasiou P, Karaoglanidis G (2021) Bacillus subtilis MBI600 Promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants 10(6):1113. https://doi.org/10.3390/plants10061113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian J Microbiol 39(3):423–426. https://doi.org/10.1590/S1517-83822008000300003

    Article  CAS  Google Scholar 

  38. Schwartz AR, Ortiz I, Maymon M, Herbold CW, Fujishige NA, Vijanderan JA, Villella W, Hanamoto K, Diener A, Sanders RE, Mason DA, Hirsch AM (2013) Bacillus simplex - a little known PGPB with anti-fungal activity-alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv viciae. Agronomy 3(4):595–620. https://doi.org/10.3390/agronomia3040595

    Article  Google Scholar 

  39. Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J (2017) Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation. Front Plant Sci 8:1143. https://doi.org/10.3389/fpls.2017.01143

    Article  PubMed  PubMed Central  Google Scholar 

  40. Raji M, Thangavelu M (2021) Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Arch Microbiol 203(6):3147–3161. https://doi.org/10.1007/s00203-021-02284-9

    Article  CAS  PubMed  Google Scholar 

  41. Ben Abdallah D, Frikha-Gargouri O, Tounsi S (2018) Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control 124:61–67. https://doi.org/10.1016/j.biocontrol.2018.01.013

    Article  Google Scholar 

  42. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  43. Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7(11):1809–1817. https://doi.org/10.1111/j.1462-2920.2005.00889.x

    Article  CAS  PubMed  Google Scholar 

  44. Brasil (2009) Regras Para Análise de Sementes. Ministério da Agricultura, Abastecimento Pecuária. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf. Accessed 2 Dec 2020

  45. Clark FE (2016) Agar-plate method for total microbial count. In: Norman AG (ed) Methods of soil analysis: part 2 chemical and microbiological properties, 9.2, pp 1460–1466. https://doi.org/10.2134/agronmonogr9.2.c48

  46. Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28(12):1717–1724. https://doi.org/10.1016/S0038-0717(96)00243-X

    Article  CAS  Google Scholar 

  47. Bettiol W, Morandi MAB, Pinto ZV, Lucon CMM (2022) Controle de qualidade e conformidade de produtos e fermentados à base de Bacillus spp.: proposta metodológica. Embrapa (Comunicado Técnico 59), Jaguariúna, p 15. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/239978/1/Bettiol-Controle-qualidade-2022-2.pdf. Accessed 2 Nov 2022

  48. Franco-Sierra ND, Posada LF, Santa-María G, Romero-Tabarez M, Villegas-Escobar V, Álvarez JC (2020) Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Funct Integr Genomics 20(4):575–589. https://doi.org/10.1007/s10142-020-00736-x

    Article  CAS  PubMed  Google Scholar 

  49. Liu Z, Wang H, Xu W, Wang Z (2020) Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD-1) for growth enhancement of rice seedling. Arch Microbiol 202(8):2169–2179. https://doi.org/10.1007/s00203-020-01934-8

    Article  CAS  PubMed  Google Scholar 

  50. Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S (2021) Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front Sustain Food Syst 5:37. https://doi.org/10.3389/fsufs.2021.605195

    Article  Google Scholar 

  51. Zhou D, Huang XF, Chaparro JM, Zhou D, Huang XF, Chaparro JM, Badri DV, Manter DK, Vivanco JM, Guo J (2016) Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401(1–2):259–272. https://doi.org/10.1007/s11104-015-2743-7

    Article  CAS  Google Scholar 

  52. Kalam S, Basu A, Podile AR (2020) Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon 6(8):e04734. https://doi.org/10.1016/j.heliyon.2020.e04734

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen F, Wang M, Zheng Y, Luo J, Yang X, Wang X (2010) Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol Biotechnol 26(4):675–684. https://doi.org/10.1007/s11274-009-0222-0

    Article  CAS  Google Scholar 

  54. Sukkasem P, Kurniawan A, Kao TC, Chuang H, wen, (2018) A multifaceted rhizobacterium Bacillus licheniformis functions as a fungal antagonist and a promoter of plant growth and abiotic stress tolerance. Environ Exp Bot 155:541–551. https://doi.org/10.1016/j.envexpbot.2018.08.005

    Article  CAS  Google Scholar 

  55. Bhattacharya A, Giri VP, Singh SP, Pandey S, Chauhan P, Soni SK, Srivastava S, Singh PC, Mishra A (2019) Intervention of bio-protective endophyte Bacillus tequilensis enhance physiological strength of tomato during Fusarium wilt infection. Biol Control 139:104074. https://doi.org/10.1016/j.biocontrol.2019.104074

    Article  CAS  Google Scholar 

  56. Cui W, He P, Munir S, He P, Li X, Li Y, Wu J, Wu Y, Yang L, He P, He Y (2019) Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601–Y2 for biocontrol of southern corn leaf blight. Biol Control 139:104080. https://doi.org/10.1016/j.biocontrol.2019.104080

    Article  CAS  Google Scholar 

  57. Pérez-Hernández Y, Díaz-Solares M, Rondón-Castillo AJ, Fuentes-Alfonso L, González-Sierra L, Guzmán-Cedeño ÁM (2020) Aislamiento de cepas de Bacillus spp. a partir del bioproducto IHPLUS® con potencialidades para el desarrollo agropecuario e industrial. Pastos y Forrajes 43(1):56–65

    Google Scholar 

  58. Idris EE, Bochow H, Ross H, Borriss R (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111(6):583–597

    CAS  Google Scholar 

  59. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Rm A, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226(4):839–851. https://doi.org/10.1007/s00425-007-0530-2

    Article  CAS  PubMed  Google Scholar 

  60. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  61. AGROFIT - Sistema de agrotóxicos fitossanitário. Ministério da Agricultura, Pecuária e Abastecimento (2022). https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 16 May 2022

  62. López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodriguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20(2):207–217. https://doi.org/10.1094/MPMI-20-2-0207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Peterson Sylvio de Oliveira Nunes acknowledges Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship. Wagner Bettiol (CNPq 307855/2019-8) and Flavio H V Medeiros (CNPq 317266/2021-7) acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the productivity fellowship. The authors acknowledge Chr. Hansen for donating the commercial product and Bacillus isolates, as well as for performing the qPCR analyses.

Author information

Authors and Affiliations

Authors

Contributions

WB and PSON conceived, designed, and performed the greenhouse and laboratory experiments. TSO and JRAZ performed the qPCR analysis. PSON and FHVM analyzed the data. WB, JRAZ, TSO, and FHVM contributed with reagents/materials/analysis tools. PSON, WB, and FHVM wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wagner Bettiol.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Nero

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de O. Nunes, P.S., de Medeiros, F.H.V., de Oliveira, T.S. et al. Bacillus subtilis and Bacillus licheniformis promote tomato growth. Braz J Microbiol 54, 397–406 (2023). https://doi.org/10.1007/s42770-022-00874-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00874-3

Keywords

Navigation