Skip to main content

Advertisement

Log in

Cryptic fungal diversity revealed by DNA metabarcoding in historic wooden structures at Whalers Bay, Deception Island, maritime Antarctic

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We provide the first assessment of fungal diversity associated with historic wooden structures at Whalers Bay (Heritage Monument 71), Deception Island, maritime Antarctic, using DNA metabarcoding. We detected a total of 177 fungal amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Monoblepharomycota, Rozellomycota, and Zoopagomycota. The assemblages were dominated by Helotiales sp. 1 and Herpotrichiellaceae sp. 1. Functional assignments indicated that the taxa detected were dominated by saprotrophic, plant and animal pathogenic, and symbiotic taxa. Metabarcoding revealed the presence of a rich and complex fungal community, which may be due to the wooden structures acting as baits attracting taxa to niches sheltered against extreme conditions, generating a hotspot for fungi in Antarctica. The sequences assigned included both cosmopolitan and endemic taxa, as well as potentially unreported diversity. The detection of DNA assigned to taxa of human and animal opportunistic pathogens raises a potential concern as Whalers Bay is one of the most popular visitor sites in Antarctica. The use of metabarcoding to detect DNA present in environmental samples does not confirm the presence of viable or metabolically active fungi and further studies using different culturing conditions and media, different growth temperatures and incubation periods, in combination with further molecular approaches such as shotgun sequencing are now required to clarify the functional ecology of these fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. All raw sequences have been deposited in the NCBI database under the codes SAMN29145234, SAMN29145235, SAMN29145236, SAMN29145237, SAMN29145238, SAMN29145239, SAMN29145240, SAMN29145241, SAMN29145242, and SAMN29145243.

References

  1. Blanchette RA, Held BW, Jurgens JA et al (2004) Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol 70:1328–1335. https://doi.org/10.1128/AEM.70.3.1328-1335.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Held BW, Blanchette RA (2017) Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol 121:145–157

    Article  PubMed  Google Scholar 

  3. Rosa LH, Zani CL, Cantrell CL et al (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Berlin, pp 1–18. https://doi.org/10.1007/978-3-030-18367-7_1

  4. Hughes KA, Bridge PD (2010) Potential impacts of Antarctic bioprospecting and associated commercial activities upon Antarctic science and scientists. Ethics in Science and Environmental Politics 10:13–18

    Article  Google Scholar 

  5. Rosa LH, Pinto OHB, Convey P et al (2021) DNA metabarcoding to assess the diversity of airborne fungi present over Keller Peninsula, King George Island, Antarctica. Microb Ecol 82:165–172. https://doi.org/10.1007/s00248-020-01627-1

    Article  CAS  PubMed  Google Scholar 

  6. Held BW, Jurgens JA, Arenz BE et al (2005) Environmental factors influencing microbial growth inside the historic expedition huts of Ross Island, Antarctica. Int Biodeterior Biodegradation 55:45–53. https://doi.org/10.1016/j.ibiod.2004.06.011

    Article  Google Scholar 

  7. Arenz BE, Held BW, Jurgens JA et al (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064. https://doi.org/10.1016/j.soilbio.2006.01.016

    Article  CAS  Google Scholar 

  8. Duncan SM, Farrell RL, Thwaites JM et al (2006) Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol 8:1212–1219. https://doi.org/10.1111/j.1462-2920.2006.01013.x

    Article  CAS  PubMed  Google Scholar 

  9. Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56. https://doi.org/10.1139/W08-120

    Article  CAS  PubMed  Google Scholar 

  10. Blanchette RA, Held BW, Arenz BE (2010) An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb Ecol 60:29–38. https://doi.org/10.1007/s00248-010-9664-z

    Article  PubMed  Google Scholar 

  11. Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fungal Diversity 49:13–22. https://doi.org/10.1007/s13225-010-0079-4

    Article  Google Scholar 

  12. de Menezes GCD, Porto BA, Radicchi GA et al (2022) Fungal impact on archaeological materials collected at Byers Peninsula Livingston Island, South Shetland Islands, Antarctica. An Acad Bras Ciênc 94:e20210218. https://doi.org/10.1590/0001-3765202220210218

    Article  PubMed  Google Scholar 

  13. Goldenberger D, Perschil I, Ritzler M, Altwegg M (1995) A simple “universal” DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification. Genome Res 4:368–370

    Article  CAS  Google Scholar 

  14. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322. https://doi.org/10.1128/aem.62.2.316-322.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Natarajan M, Nayak BK, Galindo C et al (2006) Nuclear translocation and DNA-binding activity of NFKB (NF-κB) after exposure of human monocytes to pulsed ultra-wideband electromagnetic fields (1 kV/cm) fails to transactivate κB-dependent gene expression. Radiat Res 165:645–654. https://doi.org/10.1667/RR3564.1

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613. https://doi.org/10.1371/journal.pone.0008613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richardson RT, Lin CH, Sponsler DB et al (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences 3:1400066. https://doi.org/10.3732/apps.1400066

    Article  Google Scholar 

  18. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  19. Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). https://sourceforge.net/projects/bbmap.

  20. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:1–17. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  23. Abarenkov K, Zirk A, Piirmann T (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community.

  24. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1–9. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  25. Huson DH, Beier S, Flade I et al (2016) MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957. https://doi.org/10.1371/journal.pcbi.1004957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385

    Article  PubMed  PubMed Central  Google Scholar 

  27. Babicki S, Arndt D, Marcu A et al (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:147–153

    Article  Google Scholar 

  28. Medinger R, Nolte V, Pandey RV et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40. https://doi.org/10.1111/j.1365-294X.2009.04478.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weber AA, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8:e56739. https://doi.org/10.1371/journal.pone.0056739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giner CR, Forn I, Romac S et al (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766. https://doi.org/10.1128/AEM.00560-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deiner K, Bik HM, Machler E et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895. https://doi.org/10.1111/mec.14350

    Article  PubMed  Google Scholar 

  32. Hering D, Borja A, Jones JI (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205. https://doi.org/10.1016/j.watres.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  33. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2011) Dictionary of the fungi, 10th ed. CAB International, Wallingford, UK, p. 784.

  34. Tedersoo L, Sánchez-Ramírez S, Kõljalg U et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity 90:135–159. https://doi.org/10.1007/s13225-018-0401-0

    Article  Google Scholar 

  35. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontology Electronic 4:9

    Google Scholar 

  36. Nguyen NH, Song Z, Bates ST et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  37. Duncan SM, Farrell RL, Jordan N (2010) Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica. Polar Sci 4:275–283. https://doi.org/10.1016/j.polar.2010.03.008

    Article  Google Scholar 

  38. Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268. https://doi.org/10.1007/s00300-001-0337-8

    Article  Google Scholar 

  39. Rosa LH, de Sousa JRP, de Menezes GCA et al (2020) Opportunistic fungi found in fairy rings are present on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596. https://doi.org/10.1007/s00300-020-02663-w

    Article  Google Scholar 

  40. Santiago IF, Alves TMA, Rabello A et al (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103. https://doi.org/10.1007/s00792-011-0409-9

    Article  PubMed  Google Scholar 

  41. Ogaki MB, Teixeira DR, Vieira R et al (2020) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Extremophiles 124:601–611. https://doi.org/10.1016/j.funbio.2020.02.015

    Article  CAS  Google Scholar 

  42. Upson R, Newsham KK, Bridge PD (2009) Taxonomic affinities of dark septate root endophytes in the roots of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196. https://doi.org/10.1016/j.funeco.2009.02.004

    Article  Google Scholar 

  43. Furbino LE, Godinho VM, Santiago IF et al (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787. https://doi.org/10.1007/s00248-014-0374-9

    Article  PubMed  Google Scholar 

  44. Cox F, Newsham KK, Bol R et al (2016) Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol Lett 19:528–536. https://doi.org/10.1111/ele.12587

    Article  PubMed  Google Scholar 

  45. Cox F, Newsham KK, Robinson CH (2019) Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils. Environ Microbiol 21:1586–1596. https://doi.org/10.1111/1462-2920.14533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Newsham KK, Cox F, Sands CJ et al (2020) A previously undescribed Helotialean fungus that is superabundant in soil under maritime Antarctic higher plants. Front Microbiol 11:615608

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosa LH, Pinto OHB, Santl-Temkiv T et al (2020) DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-78630-6

    Article  CAS  Google Scholar 

  48. Rosa LH, da Silva TH, Ogaki MB et al (2020) DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-78934-7

    Article  CAS  Google Scholar 

  49. de Souza LMD, Ogaki MB, Câmara PEAS et al (2021) Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: a temporal microcosm experiment. Extremophiles 25:77–84. https://doi.org/10.1007/s00792-020-01212-x

    Article  CAS  PubMed  Google Scholar 

  50. de Menezes GCA, Câmara PEAS, Pinto OHB et al (2021) Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles 25:193–202. https://doi.org/10.1007/s00792-021-01221-4

    Article  CAS  PubMed  Google Scholar 

  51. de Souza LMD, Lirio JM, Coria SH et al (2022) Diversity, distribution and ecology of fungal community present in Antarctic lake sediments uncovered by DNA metabarcoding. Sci Rep 12:8407. https://doi.org/10.1038/s41598-022-12290-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crous PW, Schubert K, Braun U et al (2007) Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud Mycol 64:123–133. https://doi.org/10.3114/sim.2007.58.07

    Article  Google Scholar 

  53. Costa FDF, da Silva NM, Voidaleski MF et al (2020) Environmental prospecting of black yeast-like agents of human disease using culture-independent methodology. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-70915-0

    Article  CAS  Google Scholar 

  54. Gams W, McGinnis MR (1983) Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 75:977–987. https://doi.org/10.1080/00275514.1983.12023783

    Article  Google Scholar 

  55. Proia LA, Hayden MK, Kammeyer PL et al (2004) Phialemonium: an emerging mold pathogen that caused 4 cases of hemodialysis-associated endovascular infection. Clin Infect Dis 39:373–379. https://doi.org/10.1086/422320

    Article  PubMed  Google Scholar 

Download references

Funding

This study received financial support from CNPq, CAPES, FNDCT, FAPEMIG, FAPT, and PROANTAR. P. Convey is supported by NERC core funding to the British Antarctic Survey’s “Biodiversity, Evolution and Adaptation” Team.

Author information

Authors and Affiliations

Authors

Contributions

LMDS, EAAT, LCC, LHR, MCS, and PEASC conceived the study. LCC and LHR collected the samples. LMDS, EAAT, LHR, and PEASC performed DNA extraction from lake sediments. FACL performed the metabarcoding analysis. LMDS, EAAT, LCC, PEASC, FACL, PC, MCS, and LHR analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Ethics approval

The collections performed in Whalers Bay (Heritage Monument 71) were authorized under permit issued by PROANTAR.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Nero

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.M.D., Teixeira, E.A.A., da Costa Coelho, L. et al. Cryptic fungal diversity revealed by DNA metabarcoding in historic wooden structures at Whalers Bay, Deception Island, maritime Antarctic. Braz J Microbiol 54, 213–222 (2023). https://doi.org/10.1007/s42770-022-00869-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00869-0

Keywords

Navigation