Skip to main content
Log in

Serological evidence of arenavirus circulation in wild rodents from central-west, southeast, and south regions of Brazil, 2002–2006

  • Environmental Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract 

Viral hemorrhagic fevers caused by arenaviruses are severe zoonotic diseases. In reservoirs, the presence of antibodies may indicate viral circulation in a population of a specific region, and these data can be used as an indicator for further investigations by molecular techniques. The present study aimed to detect the presence of arenavirus antibodies in wild rodents captured from 1998 to 2008 during epidemiological surveillance activities. A retrospective analysis of 2243 wild rodent blood samples using a broad cross-reactive in-house developed enzyme-linked immunosorbent assay (ELISA) revealed a 0.44% (10/2243) positive rate in wild rodents, which included Necromys lasiurus (6/1012), Calomys callosus (2/94), and Akodon sp. (2/273) species. These rodents were captured between 2002 to 2006 in Campo Alegre de Goiás/GO, Bodoquena/MS, Nuporanga/SP, and Mogi das Cruzes/SP. Our findings suggest the sylvatic circulation of arenavirus among wild rodents in the southeast region of Brazil. However, future virological and molecular studies are necessary to confirm the viral presence in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Radoshitzky SR, Buchmeier MJ, Charrel RN et al (2019) ICTV virus taxonomy profile: Arenaviridae. J Gen Virol 100:1200–1201. https://doi.org/10.1099/jgv.0.001280

    Article  CAS  PubMed  Google Scholar 

  2. Radoshitzky SR, Bào Y, Buchmeier MJ et al (2015) Past, present, and future of arenavirus taxonomy. Arch Virol 160:1851–1874. https://doi.org/10.1007/s00705-015-2418-y

    Article  CAS  PubMed  Google Scholar 

  3. Shao J, Liang Y, Ly H (2015) Human hemorrhagic fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathog (Basel, Switzerland) 4:283–306. https://doi.org/10.3390/pathogens4020283

    Article  Google Scholar 

  4. Buchmeier M, Peters CJ, De la Torre C (2007) Arenaviridae: the virus and their replication. Fields Virol 2:1792–1827

    Google Scholar 

  5. Charrel RN, de Lamballerie X (2010) Zoonotic aspects of arenavirus infections. Vet Microbiol 140:213–220. https://doi.org/10.1016/j.vetmic.2009.08.027

    Article  CAS  PubMed  Google Scholar 

  6. Hallam SJ, Koma T, Maruyama J, Paessler S (2018) Review of Mammarenavirus biology and replication. Front Microbiol 9:1751

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zapata JC, Salvato MS (2013) Arenavirus variations due to host-specific adaptation. Viruses 5:241–278. https://doi.org/10.3390/v5010241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Downs WG, Anderson CR, Spence L et al (1963) Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg 12:640–646. https://doi.org/10.4269/ajtmh.1963.12.640

    Article  CAS  PubMed  Google Scholar 

  9. Cogswell-Hawkinson A, Bowen R, James S et al (2012) Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J Virol 86:5791–5799. https://doi.org/10.1128/JVI.00201-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lisieux T, Coimbra M, Nassar ES et al (1994) New arenavirus isolated in Brazil. Lancet (London, England) 343:391–392. https://doi.org/10.1016/s0140-6736(94)91226-2

    Article  CAS  PubMed  Google Scholar 

  11. Charrel RN, Feldmann H, Fulhorst CF et al (2002) Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem Biophys Res Commun 296:1118–1124. https://doi.org/10.1016/S0006-291X(02)02053-3

    Article  CAS  PubMed  Google Scholar 

  12. Fernandes J, de Oliveira RC, Guterres A et al (2018) Detection of Latino virus (Arenaviridae: Mammarenavirus) naturally infecting Calomys callidus. Acta Trop 179:17–24. https://doi.org/10.1016/j.actatropica.2017.12.003

    Article  PubMed  Google Scholar 

  13. Fernandes J, de Oliveira RC, Guterres A et al (2015) Co-circulation of Clade C New World arenaviruses: new geographic distribution and host species. Infect Genet Evol 33:242–245. https://doi.org/10.1016/j.meegid.2015.05.010

    Article  PubMed  Google Scholar 

  14. Fernandes J, Guterres A, de Oliveira RC et al (2018) Xapuri virus, a novel mammarenavirus: natural reassortment and increased diversity between New World viruses. Emerg Microbes Infect 7:120. https://doi.org/10.1038/s41426-018-0119-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bisordi I, Levis S, Maeda AY et al (2015) Pinhal virus, a new arenavirus isolated from Calomys tener in Brazil. Vector Borne Zoonotic Dis 15:694–700. https://doi.org/10.1089/vbz.2014.1708

    Article  PubMed  Google Scholar 

  16. Fernandes J, Guterres A, de Oliveira RC et al (2019) Aporé virus, a novel mammarenavirus (Bunyavirales: Arenaviridae) related to highly pathogenic virus from South America. Mem Inst Oswaldo Cruz 114:e180586. https://doi.org/10.1590/0074-02760180586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellwanger JH, Chies JAB (2017) Keeping track of hidden dangers - the short history of the Sabiá virus. Rev Soc Bras Med Trop 50:3–8. https://doi.org/10.1590/0037-8682-0330-2016

    Article  PubMed  Google Scholar 

  18. de Mello MF, Amgarten D, de Nastri AC, SS, et al (2020) Sabiá virus-like Mammarenavirus in patient with fatal hemorrhagic fever, Brazil, 2020. Emerg Infect Dis 26:1332–1334. https://doi.org/10.3201/eid2606.200099

    Article  CAS  Google Scholar 

  19. Peters CJ, Buchmeier M, Rollin PE, Ksiazek TG (1996) Arenaviruses. B.N. Fields, D.M. Knipe, P.M. Howley, R.M. Chanock, J.L. Melnick, T.P. Monath, R. Roizman, S.E. Straus (Eds.), Fields Virology, Lippincott-Raven Publishers

  20. Brazilian Ministry of Health (2013) Manual de vigilância, prevenção e controle das hantaviroses. Avaiable at https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_prevencao_controle_hantaviroses.pdf

  21. Mills JN, Childs JE, Ksiazek T et al (1995) Methods for trapping and sampling small mammals for virologic testing. Avaiable at https://stacks.cdc.gov/view/cdc/11507. Accessed 9 Sept 2022

  22. Ksiazek TG, Peters CJ, Rollin PE et al (1995) Identification of a new North American hantavirus that causes acute pulmonary insufficiency. Am J Trop Med Hyg 52:117–123. https://doi.org/10.4269/ajtmh.1995.52.117

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki A, Bisordi I, Levis S et al (2004) Identifying rodent hantavirus reservoirs, Brazil. Emerg Infect Dis 10:2127–2134. https://doi.org/10.3201/eid1012.040295

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morales MA, Calderón GE, Riera LM et al (2002) Evaluation of an enzyme-linked immunosorbent assay for detection of antibodies to Junin virus in rodents. J Virol Methods 103:57–66. https://doi.org/10.1016/S0166-0934(01)00452-9

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez A, Pifat DY, Kenyon RH et al (1989) Junin virus monoclonal antibodies: characterization and cross-reactivity with other arenaviruses. J Gen Virol 70(Pt 5):1125–1132. https://doi.org/10.1099/0022-1317-70-5-1125

    Article  CAS  PubMed  Google Scholar 

  26. Vasconcelos PF, Travassos da Rosa AP, Rodrigues SG et al (1993) Laboratory-acquired human infection with SP H 114202 virus (Arenavirus: Arenaviridae family): clinical and laboratory aspects. Rev Inst Med Trop Sao Paulo 35:521–525. https://doi.org/10.1590/s0036-46651993000600008

    Article  CAS  PubMed  Google Scholar 

  27. Pinheiro FP, Shope RE, de Andrade AHP et al (1966) Amapari, a new virus of the Tacaribe group from rodents and mites of Amapa Territory, Brazil. Proc Soc Exp Biol Med 122:531–535. https://doi.org/10.3181/00379727-122-31182

    Article  Google Scholar 

  28. Abudurexiti A, Adkins S, Alioto D et al (2019) Taxonomy of the order Bunyavirales: update 2019. Arch Virol 164:1949–1965. https://doi.org/10.1007/s00705-019-04253-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bowen MD, Peters CJ, Nichol ST (1996) The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219:285–290. https://doi.org/10.1006/viro.1996.0248

    Article  CAS  PubMed  Google Scholar 

  30. Charrel RN, Lemasson JJ, Garbutt M et al (2003) New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology 317:191–196. https://doi.org/10.1016/j.virol.2003.08.016

    Article  CAS  PubMed  Google Scholar 

  31. Sabino-Santos GJ, Maia FGM, Jonsson CB et al (2016) Serologic evidence of Mammarenaviruses among wild rodents in Brazil. J Wildl Dis 52:766–769. https://doi.org/10.7589/2015-09-252

    Article  PubMed  Google Scholar 

  32. Bonvicino CR, De Oliveira JA, D’andrea PS (2008) Guia dos roedores do Brasil, com chaves para Gêneros baseadas em caracteres externos. Centro Pan-Americano de febre aftosa, Rio de Janeiro, p 120

    Google Scholar 

  33. Mills JN, Ellis BA, McKee KTJ et al (1991) Junin virus activity in rodents from endemic and nonendemic loci in central Argentina. Am J Trop Med Hyg 44:589–597. https://doi.org/10.4269/ajtmh.1991.44.589

    Article  CAS  PubMed  Google Scholar 

  34. Patterson M, Grant A, Paessler S (2014) Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr Opin Virol 5:82–90. https://doi.org/10.1016/j.coviro.2014.02.007

    Article  PubMed  Google Scholar 

  35. Tropical M (2018) Arenavirus no Brasil : eco-epidemiologia e os aspectos de sua ocorrência no processo de expansão da agricultura familiar arenavirus no Brasil : eco-epidemiologia e os aspectos de sua ocorrência no processo de expansão da agricultura familiar

  36. Olival KJ, Hosseini PR, Zambrana-Torrelio C et al (2017) Host and viral traits predict zoonotic spillover from mammals. Nature 546:646–650. https://doi.org/10.1038/nature22975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grubaugh ND, Ladner JT, Lemey P et al (2019) Tracking virus outbreaks in the twenty-first century. Nat Microbiol 4:10–19. https://doi.org/10.1038/s41564-018-0296-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the team at the National Institute of Human Viral Diseases Dr. Julio I. Maiztegui by providing antigens to perform this work and the team at Núcleo de Doenças de Transmissão Vetorial from Instituto Adolfo Lutz. We also gratefully acknowledge the contribution of Akemi Suzuki and Dr. Luiz Eloi Pereira (in memoriam) to rodents’ collection and identification. We also gratefully acknowledge Juliana Silva Nogueira’s assistance with the serological analysis and support during the manuscript review and Lucila Vilela for English review. We also thank the reviewers for their comments.

Funding

Secretaria do Estado de Saúde de São Paulo (SES), Programa de Pós-graduação em Ciências. Mestrado em Pesquisa Laboratoriais em Saúde pública da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript preparation: ALRO, RPS, MSC. Obtained funding and study supervision: MCSTT. ELISA assay: ALRO and IB. Performed the analyses: ALRO, MCSTT. All authors reviewed, contributed to, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ana Lúcia Rodrigues de Oliveira or Mariana Sequetin Cunha.

Ethics declarations

Ethics approval

Field activities concerning rodent trapping and handling were cleared by national legal provisions. The collection and handling of biological samples were carried out following international recommendations, applying human methods of anesthesia and euthanasia. Also, the research project was approved by the National Council for Technological and Scientific Development–CNPq, Proc. 403023/2004-1, which fully considered the ethical aspects in granting the research funds. The arbovirus and hantavirus surveillance program, conducted by Instituto Adolfo Lutz, was approved by CEUA protocol number 02/2011.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Nero

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.L.R., Cunha, M.S., Bisordi, I. et al. Serological evidence of arenavirus circulation in wild rodents from central-west, southeast, and south regions of Brazil, 2002–2006. Braz J Microbiol 54, 279–284 (2023). https://doi.org/10.1007/s42770-022-00858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00858-3

Keywords

Navigation