Skip to main content
Log in

Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We evaluated the diversity and enzymatic activities of culturable fungi recovered from cotton baits submerged for 2 years in Hennequin Lake, King George Island, and from benthic biofilms in Kroner Lake, Deception Island, South Shetland Islands, maritime Antarctica. A total of 154 fungal isolates were obtained, representing in rank abundance the phyla Ascomycota, Basidiomycota and Mortierellomycota. Thelebolus globosus, Goffeauzyma sp., Pseudogymnoascus verrucosus and Metschnikowia australis were the most abundant taxa. The fungal community obtained from the biofilm was more diverse and richer than that recovered from the cotton baits. However, diversity indices suggested that the lakes may harbour further fungal diversity. The capabilities of all cultured fungi to produce the extracellular enzymes cellulase, protease, lipase, agarase, carrageenase, invertase, amylase, esterase, pectinase, inulinase and gelatinase at low temperature were evaluated. All enzymes were detected, but the most widely produced were protease and pectinase. The best enzymatic indices were obtained from Holtermanniella wattica (for invertase, esterase), Goffeauzyma sp. (amylase), Metschnikowia australis (protease), Mrakia blollopis (cellulase, pectinase), Pseudogymnoascus verrucosus (agarase, carrageenase) and Leucosporidium fragarium (inulinase). The detection of multiple enzymes reinforces the ecological role of fungi in nutrient cycling in Antarctic lakes, making nutrients available to the complex aquatic food web. Furthermore, such low-temperature-active enzymes may find application in different biotechnological processes, such as in the textile, pharmaceutical, food, detergent and paper industries, as well as environmental application in pollutant bioremediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Google Earth Pro, 2019 (a and b) and Luiz H. Rosa (c and d)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gocheva YG, Krumova ET, Slokoska LS et al (2006) Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110:1347–1354. https://doi.org/10.1016/j.mycres.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Gonçalves VN, Vaz AB, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471. https://doi.org/10.1111/j.1574-6941.2012.01424.x

    Article  CAS  PubMed  Google Scholar 

  3. Rosa LH, Ogaki MB, Lirio JM, Vieira R, Coria SH, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS (2022) Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 26:16. https://doi.org/10.1007/s00792-022-01264-1

    Article  CAS  PubMed  Google Scholar 

  4. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  5. Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss Inc, New York, NY, pp 433–490

    Google Scholar 

  6. Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431. https://doi.org/10.1007/BF00051985

    Article  Google Scholar 

  7. Kuehn KA (2016) Lentic and lotic habitats as templets for fungal communities: traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecol 19:135–154. https://doi.org/10.1016/j.funeco.2015.09.009

    Article  Google Scholar 

  8. Ogaki MB, Vieira R, Lírio JM et al (2019) Diversity and ecology of fungal assemblages present in lakes of Antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Switzerland, pp 69–97. https://doi.org/10.1007/978-3-030-18367-7_4

    Chapter  Google Scholar 

  9. Ogaki MB, Vieira R, Muniz MC et al (2020) Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in Maritime Antarctica. Extremophiles 24:637–655. https://doi.org/10.1007/s00792-020-01183-z

    Article  CAS  PubMed  Google Scholar 

  10. Brunati M, Rojas JL, Sponga F et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50. https://doi.org/10.1016/j.margen.2009.04.002

    Article  PubMed  Google Scholar 

  11. Cavicchioli R, Charlton T, Ertan H et al (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460. https://doi.org/10.1111/j.1751-7915.2011.00258.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martorell MM, Ruberto LAM, de Figueroa LICD, Mac Cormack WP (2019) Antarctic yeasts as a source of enzymes for biotechnological applications. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Switzerland, pp 285–304. https://doi.org/10.1007/978-3-030-18367-7_13

    Chapter  Google Scholar 

  13. Zucconi L, Canini F, Temporiti ME, Tosi S (2020) Extracellular enzymes and bioactive compounds from antarctic terrestrial fungi for bioprospecting. Int J Environ Res Public Health 17:6459. https://doi.org/10.3390/ijerph17186459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844. https://doi.org/10.1080/09593331003663328

    Article  CAS  PubMed  Google Scholar 

  15. Gerday C, Aittaleb M, Arpigny JL et al (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta Protein Struct Mol Enzymol 1342:119–131. https://doi.org/10.1016/S0167-4838(97)00093-9

    Article  CAS  Google Scholar 

  16. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208. https://doi.org/10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  17. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241. https://doi.org/10.1111/j.1574-6941.2012.01348.x

    Article  CAS  PubMed  Google Scholar 

  18. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. https://doi.org/10.1146/annurev.biochem.75.103004.142723

    Article  CAS  PubMed  Google Scholar 

  19. Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. Am Sci Res J Eng Technol Sci (ASRJETS) 23:103–120

    Google Scholar 

  20. de Souza LM, Ogaki MB, Câmara PE et al (2021) Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: a temporal microcosm experiment. Extremophiles 25:77–84. https://doi.org/10.1007/s00792-020-01212-x

    Article  CAS  PubMed  Google Scholar 

  21. Izaguirre I, Allende L, Tell G (2006) Algal communities of a geothermally heated lagoon on Deception Island (South Shetland Islands). Polar Biol 29:364–371. https://doi.org/10.1007/s00300-005-0065-6

    Article  Google Scholar 

  22. Rosa LH, Vaz AB, Caligiorne RB et al (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167. https://doi.org/10.1007/s00300-008-0515-z

    Article  Google Scholar 

  23. White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, Cambridge, pp 315–322

    Google Scholar 

  24. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonçalves VN, Carvalho CR, Johann S et al (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152. https://doi.org/10.1007/s00300-015-1672-5

    Article  Google Scholar 

  26. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier

    Google Scholar 

  27. Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177. https://doi.org/10.1139/w98-225

    Article  CAS  PubMed  Google Scholar 

  28. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  30. Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  31. Bardou P, Mariette J, Escudié F et al (2014) Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:293. https://doi.org/10.1186/1471-2105-15-293

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 67:597–607. https://doi.org/10.1080/00275514.1975.12019782

    Article  Google Scholar 

  33. Martorell MM, Ruberto LAM, Fernández PM et al (2017) Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. J Basic Microbiol 57:504–516. https://doi.org/10.1002/jobm.201700021

    Article  CAS  PubMed  Google Scholar 

  34. Brizzio S, Turchetti B, de Garcia V et al (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525. https://doi.org/10.1139/W07-010

    Article  CAS  PubMed  Google Scholar 

  35. Duarte AWF, Dayo-Owoyemi I, Nobre FS et al (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035. https://doi.org/10.1007/s00792-013-0584-y

    Article  CAS  PubMed  Google Scholar 

  36. Furbino LE, Pellizzari FM, Neto PC et al (2018) Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biol 41:527–535. https://doi.org/10.1007/s00300-017-2213-1

    Article  Google Scholar 

  37. Carrasco M, Rozas JM, Barahona S et al (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:1–9. https://doi.org/10.1186/1471-2180-12-251

    Article  Google Scholar 

  38. Troncoso E, Barahona S, Carrasco M et al (2017) Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol 40:649–658. https://doi.org/10.1007/s00300-016-1988-9

    Article  Google Scholar 

  39. Poveda G, Gil-Durán C, Vaca I et al (2018) Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol Res 51. https://doi.org/10.1186/s40659-018-0177-4

  40. Martinez A, Cavello I, Garmendia G et al (2016) Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles 20:759–769. https://doi.org/10.1007/s00792-016-0865-3

    Article  CAS  PubMed  Google Scholar 

  41. Priddle J, Heywood RB (1980) Evolution of Antarctic lake ecosystems. Biol J Lin Soc 14:51–66. https://doi.org/10.1111/j.1095-8312.1980.tb00097.x

    Article  Google Scholar 

  42. Shevnina E, Kourzeneva E (2017) Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A: Dyn Meteorol Oceanogr 69:1317202. https://doi.org/10.1080/16000870.2017.1317202

    Article  Google Scholar 

  43. Lealem F, Gashe BA (1994) Amylase production by a Gram-positive bacterium isolated from fermenting tef (Eragrostis tef). J Appl Bacteriol 77:348–352. https://doi.org/10.1111/j.1365-2672.1994.tb03084.x

    Article  CAS  Google Scholar 

  44. Soares IA, Flores AC, Zanettin L et al (2010) Identificação do potencial amilolítico de linhagens mutantes do fungo filamentoso Aspergillus nidulans. Food Sci Technol 30:700–705. https://doi.org/10.1590/S0101-20612010000300021

    Article  Google Scholar 

  45. Rosa LH, Zani CL, Cantrell CL et al (2019) Fungi in Antarctica: diversity, ecology, efects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Switzerland, pp 1–18. https://doi.org/10.1007/978-3-030-18367-7_1

    Chapter  Google Scholar 

  46. Díaz A, Villanueva P, Oliva V et al (2019) Genetic transformation of the filamentous fungus Pseudogymnoascus verrucosus of Antarctic origin. Front Microbiol 10:2675. https://doi.org/10.3389/fmicb.2019.02675

    Article  PubMed  PubMed Central  Google Scholar 

  47. Batista TM, Hilário HO, Moreira RG et al (2017) Draft genome sequence of Metschnikowia australis strain UFMG-CM-Y6158, an extremophile marine yeast endemic to Antarctica. Genome Announc 5:e00328-e417. https://doi.org/10.1128/genomeA.00328-17

    Article  PubMed  PubMed Central  Google Scholar 

  48. de Hoog GS, Göttlich E, Platas G et al (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  49. Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35:487–497. https://doi.org/10.1002/yea.3314

    Article  CAS  PubMed  Google Scholar 

  50. Rojas-Jimenez K, Wurzbacher C, Bourne EC et al (2017) Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys. Antarct Sci Rep 7:15348. https://doi.org/10.1038/s41598-017-15598-w

    Article  CAS  Google Scholar 

  51. Bruno S, Coppola D, di Prisco G et al (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544. https://doi.org/10.3390/md17100544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krishnan A, Alias SA, Wong CMVL et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542. https://doi.org/10.1007/s00300-011-1012-3

    Article  Google Scholar 

  53. Krishnan A, Convey P, Gonzalez-Rocha G, Alias SA (2016) Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biol 39:65–76. https://doi.org/10.1007/s00300-014-1606-7

    Article  Google Scholar 

  54. Carrasco M, Villarreal P, Barahona S et al (2016) Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 16:1–9. https://doi.org/10.1186/s12866-016-0640-8

    Article  CAS  Google Scholar 

  55. Martorell MM, Ruberto LAM, Fernandez PM et al (2019) Biodiversity and enzymes bioprospection of antarctic filamentous fungi. Antarct Sci 31:3–12. https://doi.org/10.1017/S0954102018000421

    Article  Google Scholar 

  56. Tsuji M (2018) Genetic diversity of yeasts from East Ongul Island, East Antarctica and their extracellular enzymes secretion. Polar Biol 41:249–258. https://doi.org/10.1007/s00300-017-2185-1

    Article  Google Scholar 

  57. Zakaria NN, Convey P, Gomez-Fuentes C et al (2021) Oil bioremediation in the marine environment of Antarctica: a review and bibliometric keyword cluster analysis. Microorganisms 9:419. https://doi.org/10.3390/microorganisms9020419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19(6):1087–1097. https://doi.org/10.1007/s00792-015-0781-y

    Article  PubMed  Google Scholar 

  59. Singh S, Singh P, Singh S, Sharma P (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills. Antarctica Polar Record 50(1):31–36. https://doi.org/10.1017/S0032247412000563

    Article  Google Scholar 

  60. Stchigel AM, Cano J, MacCormack CW (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382. https://doi.org/10.1017/S0953756201003379

    Article  CAS  Google Scholar 

  61. de Menezes GC, Godinho VM, Porto BA et al (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269. https://doi.org/10.1007/s00792-016-0895-x

    Article  CAS  PubMed  Google Scholar 

  62. Loperena L, Soria V, Varela H et al (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256. https://doi.org/10.1007/s11274-012-1032-3

    Article  CAS  PubMed  Google Scholar 

  63. Freire RKB, Mendonça CMN, Ferraro RB et al (2021) Glutaminase-free L-asparaginase production by Leucosporidium muscorum isolated from Antarctic marine-sediment. Prep Biochem Biotechnol 51(3):277–288. https://doi.org/10.1080/10826068.2020.1815053

    Article  CAS  PubMed  Google Scholar 

  64. Zhang T, Zhang YQ, Liu HY et al (2014) Cryptococcus fildesensis sp. nov., a psychrophilic basidiomycetous yeast isolated from Antarctic moss. Int J Syst Evol Microbiol 64(2):675–679. https://doi.org/10.1099/ijs.0.054981-0

    Article  PubMed  Google Scholar 

  65. Rovati JI, Pajot HF, Ruberto L et al (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470. https://doi.org/10.1002/yea.2982

    Article  CAS  PubMed  Google Scholar 

  66. Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314. https://doi.org/10.1007/s00284-009-9543-3

    Article  CAS  PubMed  Google Scholar 

  67. Singh P, Singh SM (2012) Characterization of yeast and flamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583. https://doi.org/10.1007/s00300-011-1103-1

    Article  Google Scholar 

  68. Thomas-Hall SR, Turchetti B, Buzzini P et al (2010) Cold-adapted yeasts from Antarctica and Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp.nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59. https://doi.org/10.1007/s00792-009-0286-7

    Article  CAS  PubMed  Google Scholar 

  69. de García V, Brizzio S, Libkind D et al (2007) Biodiversity of cold-adapted easts from glacial meltwater rivers in Patagonia Argentina. FEMS Microbiol Ecol 59:331–341. https://doi.org/10.1111/j.1574-6941.2006.00239.x

    Article  CAS  PubMed  Google Scholar 

  70. di Menna ME (1966) Yeasts in Antarctic soils. Antonie Van Leeuwenhoek 32:29–38. https://doi.org/10.1007/BF02097443

    Article  PubMed  Google Scholar 

  71. Suji M, Fujiu S, Xiao N et al (2013) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130. https://doi.org/10.1111/1574-6968.12217

    Article  CAS  Google Scholar 

  72. Gomes ECQ, Godinho VM, Silva DAS et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393. https://doi.org/10.1007/s00792-018-1003-1

    Article  CAS  PubMed  Google Scholar 

  73. da Silva MK, da Silva AV, Fernandez PM et al (2022) Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. Anais da Academia Brasileira de Ciências94. https://doi.org/10.1590/0001-3765202220210540

  74. Loque CP, Medeiros AO, Pellizzari FM et al (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33(5):641–648. https://doi.org/10.1007/s00300-009-0740-0

    Article  Google Scholar 

Download references

Funding

This study received financial support from CNPq, PROANTAR, FAPEMIG, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luiz Henrique Rosa

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.M.D., Ogaki, M.B., Teixeira, E.A.A. et al. Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes. Braz J Microbiol 54, 1923–1933 (2023). https://doi.org/10.1007/s42770-022-00834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00834-x

Keywords

Navigation